// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/reader/buffered_reader.h" #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace operators { namespace reader { BufferedReader::~BufferedReader() { VLOG(1) << "~BufferedReader"; reader_->Shutdown(); while (!position_.empty()) { auto &front = position_.front(); if (front.valid()) { front.wait(); } position_.pop(); } } BufferedReader::BufferedReader( const std::shared_ptr &reader, const platform::Place &place, size_t buffer_size) : framework::DecoratedReader(reader), thread_pool_(1), place_(place), buffer_size_(buffer_size) { VLOG(1) << "BufferedReader"; #ifdef PADDLE_WITH_CUDA if (platform::is_gpu_place(place_)) { int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device; compute_stream_ = ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance() .Get(place_))) ->stream(); events_.resize(buffer_size); for (auto &event : events_) { event = platform::CudaEventResourcePool::Instance().New(dev_idx); } stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx); } #endif cpu_buffer_.resize(buffer_size); gpu_buffer_.resize(buffer_size); ReadTillBufferFullAsync(); } void BufferedReader::ReadTillBufferFullAsync() { for (size_t i = 0; i < buffer_size_; ++i) { ReadAsync(i); } } void BufferedReader::ReadAsync(size_t i) { position_.emplace(thread_pool_.enqueue([this, i]() -> size_t { TensorVec &cpu = cpu_buffer_[i]; reader_->ReadNext(&cpu); if (cpu.empty()) { return -1UL; } #ifdef PADDLE_WITH_CUDA // NOTE(liangdun): using async copy instead of TensorCopySync // TensorCopySync would block other stream, because TensorCopySync // issues the copying command to the default stream, it will make two // commands from different streams cannot run concurrently. if (platform::is_gpu_place(place_)) { TensorVec &gpu = gpu_buffer_[i]; if (gpu.empty()) { gpu.resize(cpu.size()); } else { PADDLE_ENFORCE_EQ( gpu.size(), cpu.size(), platform::errors::InvalidArgument( "Input tensor number on GPU and CPU devices are not matched.")); } std::vector gpu_ptrs; gpu_ptrs.reserve(cpu.size()); for (size_t i = 0; i < cpu.size(); ++i) { gpu[i].Resize(cpu[i].dims()); gpu[i].set_layout(cpu[i].layout()); gpu_ptrs.emplace_back(gpu[i].mutable_data(place_, cpu[i].type())); } // NOTE(zjl): cudaStreamWaitEvent() must be called after all // gpu[i].mutable_data() is called, since some ops release // gpu memory immediately without waiting gpu kernel ends platform::SetDeviceId( BOOST_GET_CONST(platform::CUDAPlace, place_).device); PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventRecord(events_[i].get(), compute_stream_)); PADDLE_ENFORCE_CUDA_SUCCESS( cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0)); platform::RecordEvent record_event("BufferedReader:MemoryCopy"); for (size_t i = 0; i < cpu.size(); ++i) { auto cpu_place = cpu[i].place(); auto cpu_ptr = cpu[i].data(); auto gpu_ptr = gpu_ptrs[i]; auto size = cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type()); if (platform::is_cuda_pinned_place(cpu_place)) { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place), cpu_ptr, size, stream_.get()); } else if ((platform::is_gpu_place(cpu_place))) { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, BOOST_GET_CONST(platform::CUDAPlace, cpu_place), cpu_ptr, size, stream_.get()); } else { platform::CUDAPinnedPlace cuda_pinned_place; framework::LoDTensor cuda_pinned_tensor; cuda_pinned_tensor.Resize(cpu[i].dims()); auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(cuda_pinned_place, cpu[i].type()); memory::Copy(cuda_pinned_place, cuda_pinned_ptr, BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr, size); memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, cuda_pinned_place, cuda_pinned_ptr, size, stream_.get()); PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get())); } gpu[i].set_lod(cpu[i].lod()); } PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get())); } #endif return i; })); } void BufferedReader::ShutdownImpl() { VLOG(1) << "ShutdownImpl"; reader_->Shutdown(); while (!position_.empty()) { position_.pop(); } prev_pos_ = -1UL; } void BufferedReader::StartImpl() { reader_->Start(); ReadTillBufferFullAsync(); } void BufferedReader::ReadNextImpl(std::vector *out) { if (position_.empty()) { out->clear(); return; } size_t i = position_.front().get(); position_.pop(); if (i == -1UL) { ReadNextImpl(out); return; } *out = std::move(platform::is_gpu_place(place_) ? gpu_buffer_[i] : cpu_buffer_[i]); // Do not push current position into ReadAsync. Push the previous position // Since all computation in fluid are async, change the data of // current position may cause data error. if (prev_pos_ != -1Ul) { ReadAsync(prev_pos_); } prev_pos_ = i; } } // namespace reader } // namespace operators } // namespace paddle