/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/platform/device_context.h" namespace paddle { namespace platform { enum EventKind { kMark, kPushRange, kPopRange }; inline uint64_t GetTimeInNsec() { // using std::chrono; using clock = std::conditional::type; return std::chrono::duration_cast( clock::now().time_since_epoch()) .count(); } class Event { public: // the DeviceContext is used to get the cuda stream. Event(EventKind kind, std::string name, uint32_t thread_id, const platform::DeviceContext* dev_ctx = nullptr) : kind_(kind), name_(std::move(name)), thread_id_(thread_id) { has_cuda_ = false; #ifdef PADDLE_WITH_CUDA auto* cuda_dev_ctx = static_cast(dev_ctx); if (cuda_dev_ctx) { PADDLE_ENFORCE(cudaGetDevice(&device_)); PADDLE_ENFORCE(cudaEventCreate(&event_)); auto stream = cuda_dev_ctx->stream(); PADDLE_ENFORCE(cudaEventRecord(event_, stream)); has_cuda_ = true; } #endif cpu_ns_ = GetTimeInNsec(); } std::string kind() const { switch (kind_) { case EventKind::kMark: return "mark"; case EventKind::kPushRange: return "push"; case EventKind::kPopRange: return "pop"; } PADDLE_THROW("Unknown EventKind."); } std::string name() const { return name_; } bool has_cuda() const { return has_cuda_; } #ifdef PADDLE_WITH_CUDA cudaEvent_t event() const { return event_; } int device() const { return device_; } #endif double CpuElapsedUs(const Event& e) const { return (e.cpu_ns_ - cpu_ns_) / (1000.0); } double CudaElapsedUs(const Event& e) const { #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE(e.has_cuda() && has_cuda()); PADDLE_ENFORCE(e.device() == device()); PADDLE_ENFORCE(cudaEventSynchronize(event_)); PADDLE_ENFORCE(cudaEventSynchronize(e.event())); float ms; PADDLE_ENFORCE(cudaEventElapsedTime(&ms, event_, e.event())); return ms * 1000.0; #else PADDLE_THROW("CUDA is not enabled"); #endif } private: EventKind kind_; std::string name_; uint32_t thread_id_; int64_t cpu_ns_; bool has_cuda_; #ifdef PADDLE_WITH_CUDA cudaEvent_t event_ = nullptr; int device_ = -1; #endif }; struct EventList { constexpr static std::size_t kMB = 1024 * 1024; constexpr static std::size_t kEventBlockSize = 16 * kMB; constexpr static std::size_t kEventSize = sizeof(Event); constexpr static std::size_t kEventAlign = alignof(Event); constexpr static std::size_t kNumBlock = kEventBlockSize / ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign); template void Record(Args&&... args) { if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) { event_blocks.emplace_front(); event_blocks.front().reserve(kNumBlock); } event_blocks.front().emplace_back(std::forward(args)...); } std::vector Reduce() { std::vector result; for (auto& block : event_blocks) { result.insert(result.begin(), std::make_move_iterator(block.begin()), std::make_move_iterator(block.end())); } event_blocks.clear(); return result; } std::forward_list> event_blocks; }; enum ProfilerState { kDisabled, kCPU, kCUDA, }; // The profiler state, the initial value is ProfilerState::kDisabled extern ProfilerState kState; // The global mutex extern std::mutex kAllEventListsMutex; // The total event lists of all threads extern std::list> kAllEventLists; // The thread local event list only can be accessed by the specific thread extern thread_local std::shared_ptr kEventList; // The thread index of each thread extern thread_local int32_t kThreadId; // The kNextThreadId is a global counter for threads, by the kThreadId and // kNextThreadId, we can know how many threads have created EventList. extern uint32_t kNextThreadId; inline EventList& GetEventList() { if (!kEventList) { std::lock_guard guard(kAllEventListsMutex); kEventList = std::make_shared(); kThreadId = kNextThreadId++; kAllEventLists.emplace_front(kEventList); } return *kEventList; } inline void Mark(const std::string name, const platform::DeviceContext* dev_ctx = nullptr) { GetEventList().Record(EventKind::kMark, std::move(name), kThreadId, dev_ctx); } void PushEvent(const std::string name, const platform::DeviceContext* dev_ctx = nullptr); void PopEvent(const std::string name, const platform::DeviceContext* dev_ctx = nullptr); struct RecordEvent { explicit RecordEvent(const std::string name, platform::DeviceContext* dev_ctx = nullptr) { if (kState == ProfilerState::kDisabled) return; dev_ctx_ = dev_ctx; name_ = name; GetEventList().Record(EventKind::kPushRange, std::move(name), kThreadId, dev_ctx_); } ~RecordEvent() { if (kState == ProfilerState::kDisabled) return; GetEventList().Record(EventKind::kPopRange, std::move(name_), kThreadId, dev_ctx_); } platform::DeviceContext* dev_ctx_; std::string name_; }; void EnableProfiler(ProfilerState state); std::vector> DisableProfiler(); void ParseEvents(std::vector>); } // namespace platform } // namespace paddle