# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..fluid import core, layers # TODO: define searching & indexing functions of a tensor from ..fluid.layers import has_inf #DEFINE_ALIAS from ..fluid.layers import has_nan #DEFINE_ALIAS __all__ = [ 'argmax', 'argmin', 'argsort', 'has_inf', 'has_nan', 'masked_select', 'topk', 'where', 'index_select', 'nonzero', 'sort', 'index_sample', ] from paddle.common_ops_import import * def argsort(x, axis=-1, descending=False, name=None): """ :alias_main: paddle.argsort :alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: sorted indices(with the same shape as ``x`` and with data type int64). Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]], dtype='float32') out1 = paddle.argsort(x=x, axis=-1) out2 = paddle.argsort(x=x, axis=0) out3 = paddle.argsort(x=x, axis=1) print(out1.numpy()) #[[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2.numpy()) #[[[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] # [[1 0 0 0] # [1 1 1 1] # [0 0 0 1]]] print(out3.numpy()) #[[[1 1 1 2] # [0 0 2 0] # [2 2 0 1]] # [[2 0 2 0] # [1 1 0 2] # [0 2 1 1]]] """ if in_dygraph_mode(): _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending) return ids check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort') helper = LayerHelper("argsort", **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype, stop_gradient=True) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': x}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return ids def argmax(x, axis=None, keepdim=False, dtype="int64", name=None): """ This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index. keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False. dtype(str|np.dtype, optional): Data type of the output tensor which can be int32, int64. The default value is 'int64', and it will return the int64 indices. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64` Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[5,8,9,5], [0,0,1,7], [6,9,2,4]]) out1 = paddle.argmax(x) print(out1.numpy()) # 2 out2 = paddle.argmax(x, axis=1) print(out2.numpy()) # [2 3 1] out3 = paddle.argmax(x, axis=-1) print(out3.numpy()) # [2 3 1] """ if axis is not None and not isinstance(axis, int): raise TypeError( "The type of 'axis' must be int or None in argmax, but received %s." % (type(axis))) if dtype is None: raise ValueError( "the value of 'dtype' in argmax could not be None, but received None" ) var_dtype = convert_np_dtype_to_dtype_(dtype) check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin') flatten = False if axis is None: flatten = True axis = 0 if in_dygraph_mode(): out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims', keepdim, 'flatten', flatten) return out helper = LayerHelper("argmax", **locals()) check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'paddle.argmax') attrs = {} out = helper.create_variable_for_type_inference(var_dtype) attrs['keepdims'] = keepdim attrs['axis'] = axis attrs['flatten'] = flatten attrs['dtype'] = var_dtype helper.append_op( type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def argmin(x, axis=None, keepdim=False, dtype="int64", name=None): """ This OP computes the indices of the min elements of the input tensor's element along the provided axis. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index. keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False. dtype(str): Data type of the output tensor which can be int32, int64. The default value is 'int64', and it will return the int64 indices. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64` Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[5,8,9,5], [0,0,1,7], [6,9,2,4]]) out1 = paddle.argmin(x) print(out1.numpy()) # 4 out2 = paddle.argmin(x, axis=1) print(out2.numpy()) # [0 0 2] out3 = paddle.argmin(x, axis=-1) print(out3.numpy()) # [0 0 2] """ if axis is not None and not isinstance(axis, int): raise TypeError( "The type of 'axis' must be int or None in argmin, but received %s." % (type(axis))) if dtype is None: raise ValueError( "the value of 'dtype' in argmin could not be None, but received None" ) var_dtype = convert_np_dtype_to_dtype_(dtype) check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin') flatten = False if axis is None: flatten = True axis = 0 if in_dygraph_mode(): out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims', keepdim, 'flatten', flatten) return out helper = LayerHelper("argmin", **locals()) check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'paddle.argmin') out = helper.create_variable_for_type_inference(var_dtype) attrs = {} attrs['keepdims'] = keepdim attrs['axis'] = axis attrs['flatten'] = flatten attrs['dtype'] = var_dtype helper.append_op( type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def index_select(x, index, axis=0, name=None): """ :alias_main: paddle.index_select :alias: paddle.tensor.index_select, paddle.tensor.search.index_select Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using the entries in ``index`` which is a Tensor. The returned tensor has the same number of dimensions as the original ``x`` tensor. The dim-th dimension has the same size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. Args: x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64. index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64. axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor with same data type as ``x``. Examples: .. code-block:: python import paddle paddle.disable_static() # Now we are in imperative mode x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) index = paddle.to_tensor([0, 1, 1], dtype='int32') out_z1 = paddle.index_select(x=x, index=index) #[[1. 2. 3. 4.] # [5. 6. 7. 8.] # [5. 6. 7. 8.]] out_z2 = paddle.index_select(x=x, index=index, axis=1) #[[ 1. 2. 2.] # [ 5. 6. 6.] # [ 9. 10. 10.]] """ if in_dygraph_mode(): return core.ops.index_select(x, index, 'dim', axis) helper = LayerHelper("index_select", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_select') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_select') out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='index_select', inputs={'X': x, 'Index': index}, outputs={'Out': out}, attrs={'dim': axis}) return out def nonzero(x, as_tuple=False): """ Return a tensor containing the indices of all non-zero elements of the `input` tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension in `input`, each containing the indices (in that dimension) of all non-zero elements of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1]. Args: x (Tensor): The input tensor variable. as_tuple (bool): Return type, Tensor or tuple of Tensor. Returns: Tensor. The data type is int64. Examples: .. code-block:: python import paddle x1 = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]]) x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0]) x3 = paddle.to_tensor([0.0, 0.0, 0.0]) out_z1 = paddle.nonzero(x1) print(out_z1.numpy()) #[[0 0] # [1 1] # [2 2]] out_z1_tuple = paddle.nonzero(x1, as_tuple=True) for out in out_z1_tuple: print(out.numpy()) #[[0] # [1] # [2]] #[[0] # [1] # [2]] out_z2 = paddle.nonzero(x2) print(out_z2.numpy()) #[[1] # [3]] out_z2_tuple = paddle.nonzero(x2, as_tuple=True) for out in out_z2_tuple: print(out.numpy()) #[[1] # [3]] out_z3 = paddle.nonzero(x3) print(out_z3.numpy()) #[] out_z3_tuple = paddle.nonzero(x3, as_tuple=True) for out in out_z3_tuple: print(out.numpy()) #[] """ list_out = [] shape = x.shape rank = len(shape) if in_dygraph_mode(): outs = core.ops.where_index(x) else: outs = layers.where(x) if not as_tuple: return outs elif rank == 1: return tuple([outs]) else: for i in range(rank): list_out.append( layers.slice( outs, axes=[rank - 1], starts=[i], ends=[i + 1])) return tuple(list_out) def sort(x, axis=-1, descending=False, name=None): """ :alias_main: paddle.sort :alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: sorted tensor(with the same shape and data type as ``x``). Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]], dtype='float32') out1 = paddle.sort(x=x, axis=-1) out2 = paddle.sort(x=x, axis=0) out3 = paddle.sort(x=x, axis=1) print(out1.numpy()) #[[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out2.numpy()) #[[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3.numpy()) #[[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]] """ if in_dygraph_mode(): out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending) return out helper = LayerHelper("sort", **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype, stop_gradient=False) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': x}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return out def where(condition, x, y, name=None): """ :alias_main: paddle.where :alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where Return a tensor of elements selected from either $x$ or $y$, depending on $condition$. .. math:: out_i = \\begin{cases} x_i, \quad \\text{if} \\ condition_i \\ is \\ True \\\\ y_i, \quad \\text{if} \\ condition_i \\ is \\ False \\\\ \\end{cases} Args: condition(Variable): The condition to choose x or y. x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64. y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with the same data dype as x. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2]) y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0]) out = paddle.where(x>1, x, y) print(out.numpy()) #out: [1.0, 1.0, 3.2, 1.2] """ if not in_dygraph_mode(): check_variable_and_dtype(condition, 'condition', ['bool'], 'where') check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where') check_variable_and_dtype( y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where') x_shape = list(x.shape) y_shape = list(y.shape) if x_shape == y_shape: if in_dygraph_mode(): return core.ops.where(condition, x, y) else: helper = LayerHelper("where", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='where', inputs={'Condition': condition, 'X': x, 'Y': y}, outputs={'Out': [out]}) return out else: cond_int = layers.cast(condition, x.dtype) cond_not_int = layers.cast(layers.logical_not(condition), x.dtype) out1 = layers.elementwise_mul(x, cond_int) out2 = layers.elementwise_mul(y, cond_not_int) out = layers.elementwise_add(out1, out2) return out def index_sample(x, index): """ :alias_main: paddle.index_sample :alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample **IndexSample Layer** IndexSample OP returns the element of the specified location of X, and the location is specified by Index. .. code-block:: text Given: X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] Index = [[0, 1, 3], [0, 2, 4]] Then: Out = [[1, 2, 4], [6, 8, 10]] Args: x (Variable): The source input tensor with 2-D shape. Supported data type is int32, int64, float32, float64. index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. Data type is int32 or int64. Returns: output (Variable): The output is a tensor with the same shape as index. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]], dtype='float32') index = paddle.to_tensor([[0, 1, 2], [1, 2, 3], [0, 0, 0]], dtype='int32') target = paddle.to_tensor([[100, 200, 300, 400], [500, 600, 700, 800], [900, 1000, 1100, 1200]], dtype='int32') out_z1 = paddle.index_sample(x, index) print(out_z1.numpy()) #[[1. 2. 3.] # [6. 7. 8.] # [9. 9. 9.]] # Use the index of the maximum value by topk op # get the value of the element of the corresponding index in other tensors top_value, top_index = paddle.topk(x, k=2) out_z2 = paddle.index_sample(target, top_index) print(top_value.numpy()) #[[ 4. 3.] # [ 8. 7.] # [12. 11.]] print(top_index.numpy()) #[[3 2] # [3 2] # [3 2]] print(out_z2.numpy()) #[[ 400 300] # [ 800 700] # [1200 1100]] """ helper = LayerHelper("index_sample", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_sample') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_sample') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='index_sample', inputs={'X': x, 'Index': index}, outputs={'Out': out}) return out def masked_select(x, mask, name=None): """ This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask`` which is a tensor with data type of bool. Args: x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A 1-D Tensor which is the same data type as ``x``. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) mask = paddle.to_tensor([[True, False, False, False], [True, True, False, False], [True, False, False, False]]) out = paddle.masked_select(x, mask) #[1.0 5.0 6.0 9.0] """ if in_dygraph_mode(): return core.ops.masked_select(x, mask) helper = LayerHelper("masked_select", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.mask_select') check_variable_and_dtype(mask, 'mask', ['bool'], 'paddle.tensor.search.masked_select') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='masked_select', inputs={'X': x, 'Mask': mask}, outputs={'Y': out}) return out def topk(x, k, axis=None, largest=True, sorted=True, name=None): """ This OP is used to find values and indices of the k largest or smallest at the optional axis. If the input is a 1-D Tensor, finds the k largest or smallest values and indices. If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`. Args: x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64. k(int, Tensor): The number of top elements to look for along the axis. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is -1. largest(bool, optional) : largest is a flag, if set to true, algorithm will sort by descending order, otherwise sort by ascending order. Default is True. sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64. Examples: .. code-block:: python import paddle paddle.disable_static() tensor_1 = paddle.to_tensor([1, 4, 5, 7]) value_1, indices_1 = paddle.topk(tensor_1, k=1) print(value_1.numpy()) # [7] print(indices_1.numpy()) # [3] tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]]) value_2, indices_2 = paddle.topk(tensor_2, k=1) print(value_2.numpy()) # [[7] # [6]] print(indices_2.numpy()) # [[3] # [1]] value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1) print(value_3.numpy()) # [[7] # [6]] print(indices_3.numpy()) # [[3] # [1]] value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0) print(value_4.numpy()) # [[2 6 5 7]] print(indices_4.numpy()) # [[1 1 0 0]] """ if in_dygraph_mode(): k = k.numpy().item(0) if isinstance(k, Variable) else k if axis is None: out, indices = core.ops.top_k_v2(x, 'k', int(k), 'largest', largest, 'sorted', sorted) else: out, indices = core.ops.top_k_v2(x, 'k', int(k), 'axis', axis, 'largest', largest, 'sorted', sorted) return out, indices helper = LayerHelper("top_k_v2", **locals()) inputs = {"X": [x]} attrs = {} if isinstance(k, Variable): inputs['K'] = [k] else: attrs = {'k': k} attrs['largest'] = largest attrs['sorted'] = sorted if axis is not None: attrs['axis'] = axis values = helper.create_variable_for_type_inference(dtype=x.dtype) indices = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="top_k_v2", inputs=inputs, outputs={"Out": [values], "Indices": [indices]}, attrs=attrs) indices.stop_gradient = True return values, indices