// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/attention_lstm_fuse_pass.h" #include #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h" #include "paddle/fluid/framework/lod_tensor.h" namespace paddle { namespace framework { namespace ir { struct Param { std::string X = "concat_0.tmp_0"; std::string C0 = "cell_init"; std::string H0 = "hidden_init"; std::string AttentionWeight = "attention_fc.w_0"; std::string AttentionBias = "attention_fc.b_0"; std::string AttentionScalar = "attention_output.w_0"; std::string AttentionScalarBias = "attention_output.b_0"; std::string LSTMWeight = "attention_w.new"; std::string LSTMBias = "attention_b.new"; std::string Hidden = "array_to_lod_tensor_0.tmp_0"; std::string Cell = "at.cell.new"; std::string AttentionedX = "at.x.new"; std::string AttentionFCOut = "at.fc.new"; std::string LSTMX = "at.lstmx.new"; std::string LSTMOUT = "at.lstmout.new"; }; void PrepareParameters(Graph* graph, const Param& param); void FindWhileOp(Graph* graph) { GraphPatternDetector gpd; std::unordered_set fused_external_ops( {35, 36, 37, 38, 43, 44, 49, 45, 46, 47, 41, 42, 53, 54, 48, 57, 55, 56, 52, 74, 80, 77, 78, 79, 50, 77, 39, 40, 51}); gpd.mutable_pattern()->NewNode( [&](Node* n) { return fused_external_ops.count(n->id()); }, "while"); if (!graph->Has(kGraphvizMarkedNodeAttr)) { graph->Set(kGraphvizMarkedNodeAttr, new GraphVizPass::marked_nodes_t); } auto& marked_nodes = graph->Get(kGraphvizMarkedNodeAttr); auto handle = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { auto* while_pat_node = gpd.pattern().RetrieveNode("while"); auto* while_node = subgraph.at(while_pat_node); marked_nodes.insert(while_node); }; gpd(graph, handle); Param param; // Add AttentionLSTM node OpDesc op_desc; op_desc.SetType("attention_lstm"); #define OP_SET_IN(x) op_desc.SetInput(#x, {param.x}); #define OP_SET_OUT(x) op_desc.SetOutput(#x, {param.x}); OP_SET_IN(X); OP_SET_IN(C0); OP_SET_IN(H0); OP_SET_IN(AttentionWeight); OP_SET_IN(AttentionBias); OP_SET_IN(AttentionScalar); OP_SET_IN(AttentionScalarBias); OP_SET_IN(LSTMWeight); OP_SET_IN(LSTMBias); OP_SET_OUT(Hidden); OP_SET_OUT(Cell); OP_SET_OUT(AttentionedX); OP_SET_OUT(AttentionFCOut); OP_SET_OUT(LSTMX); OP_SET_OUT(LSTMOUT); #undef OP_SET_IN #undef OP_SET_OUT auto* X = graph->RetrieveNode(34); auto* LSTMOUT = graph->RetrieveNode(81); auto* cell_init = graph->RetrieveNode(6); auto* hidden_init = graph->RetrieveNode(8); auto* lstm_op = graph->CreateOpNode(&op_desc); PrepareParameters(graph, param); IR_NODE_LINK_TO(X, lstm_op); IR_NODE_LINK_TO(cell_init, lstm_op); IR_NODE_LINK_TO(hidden_init, lstm_op); IR_NODE_LINK_TO(lstm_op, LSTMOUT); GraphSafeRemoveNodes(graph, marked_nodes); } #define CHECK_P1(x) PADDLE_ENFORCE_NOT_NULL(x); #define CHECK_P2(x0, x1) \ CHECK_P1(x0); \ CHECK_P1(x1); #define CHECK_P3(x0, x1, x2) \ CHECK_P2(x0, x1); \ CHECK_P1(x2); #define CHECK_P4(x0, x1, x2, x3) \ CHECK_P3(x0, x1, x2); \ CHECK_P1(x3); #define CHECK_P5(x0, x1, x2, x3, x4) \ CHECK_P4(x0, x1, x2, x3); \ CHECK_P1(x4); void PrepareLSTMWeight(const LoDTensor& W_forget_w0, const LoDTensor& W_forget_w1, const LoDTensor& W_input_w0, const LoDTensor& W_input_w1, const LoDTensor& W_output_w0, const LoDTensor& W_output_w1, const LoDTensor& W_cell_w0, const LoDTensor& W_cell_w1, LoDTensor* out); void PrepareLSTMBias(const LoDTensor& B_forget, const LoDTensor& B_input, const LoDTensor& B_output, const LoDTensor& B_cell, LoDTensor* out); void PrepareParameters(Graph* graph, const Param& param) { // Check parameters PADDLE_ENFORCE(graph->Has(kParamScopeAttr)); auto* scope = graph->Get(kParamScopeAttr); // Create new parameters. scope->Var(param.LSTMWeight)->GetMutable(); scope->Var(param.LSTMBias)->GetMutable(); scope->Var(param.Hidden)->GetMutable(); scope->Var(param.Cell)->GetMutable(); scope->Var(param.AttentionedX)->GetMutable(); scope->Var(param.AttentionFCOut)->GetMutable(); scope->Var(param.LSTMX)->GetMutable(); scope->Var(param.LSTMOUT)->GetMutable(); #define GATE_W(name__) \ auto* W_##name__##_w0 = scope->FindVar(#name__ ".w_0"); \ auto* W_##name__##_w1 = scope->FindVar(#name__ ".w_1"); \ auto* W_##name__##_b0 = scope->FindVar(#name__ ".b_0"); \ CHECK_P3(W_##name__##_w0, W_##name__##_w1, W_##name__##_b0); \ VLOG(4) << #name__ "_w0" \ << " shape: " << W_##name__##_w0->Get().dims(); \ VLOG(4) << #name__ "_w1" \ << " shape: " << W_##name__##_w1->Get().dims(); \ VLOG(4) << #name__ "_b0" \ << " shape: " << W_##name__##_b0->Get().dims(); \ auto& W_##name__##_w0_t = W_##name__##_w0->Get(); \ auto& W_##name__##_w1_t = W_##name__##_w1->Get(); \ auto& W_##name__##_b0_t = W_##name__##_b0->Get(); GATE_W(forget); GATE_W(input); GATE_W(output); GATE_W(c); #undef GATE_W auto* attention_fc_w = scope->FindVar("attention_fc.w_0"); auto* attention_fc_b = scope->FindVar("attention_fc.b_0"); auto* attention_output_w = scope->FindVar("attention_output.w_0"); auto* attention_output_b = scope->FindVar("attention_output.b_0"); CHECK_P4(attention_fc_w, attention_fc_b, attention_output_w, attention_output_b); auto* lstm_weight = scope->Var(param.LSTMWeight); auto* lstm_weight_t = lstm_weight->GetMutable(); auto* lstm_bias = scope->Var(param.LSTMBias); auto* lstm_bias_t = lstm_bias->GetMutable(); // reshape attention_bias auto* attention_bias_t = scope->FindVar(param.AttentionBias)->GetMutable(); PADDLE_ENFORCE_EQ(attention_bias_t->dims().size(), 1); attention_bias_t->Resize(make_ddim({1, attention_bias_t->dims()[0]})); auto* attention_scalar_bias_t = scope->FindVar(param.AttentionScalarBias)->GetMutable(); attention_scalar_bias_t->Resize( make_ddim({1, attention_scalar_bias_t->dims()[0]})); PrepareLSTMWeight(W_forget_w0_t, W_forget_w1_t, W_input_w0_t, W_input_w1_t, W_output_w0_t, W_output_w1_t, W_c_w0_t, W_c_w1_t, lstm_weight_t); PrepareLSTMBias(W_forget_b0_t, W_input_b0_t, W_output_b0_t, W_c_b0_t, lstm_bias_t); } // Prepare parameters void PrepareLSTMWeight(const LoDTensor& W_forget_w0, const LoDTensor& W_forget_w1, const LoDTensor& W_input_w0, const LoDTensor& W_input_w1, const LoDTensor& W_output_w0, const LoDTensor& W_output_w1, const LoDTensor& W_cell_w0, const LoDTensor& W_cell_w1, LoDTensor* out) { int D = W_forget_w0.dims()[0]; int M = W_forget_w1.dims()[0]; out->Resize(make_ddim({D + M, 4 * D})); VLOG(3) << "LSTMWeight resized to " << out->dims(); float* out_data = out->mutable_data(platform::CPUPlace()); std::array tensors{ W_forget_w0.data(), W_input_w0.data(), W_output_w0.data(), W_cell_w0.data()}; std::array tensors1{ W_forget_w1.data(), W_input_w1.data(), W_output_w1.data(), W_cell_w1.data()}; for (int row = 0; row < D; row++) { for (int col = 0; col < 4; col++) { float* dst = out_data + 4 * D * row + D * col; const float* src = tensors[col] + D * row; memcpy(dst, src, D * sizeof(float)); } } for (int row = 0; row < M; row++) { for (int col = 0; col < 4; col++) { float* dst = out_data + 4 * D * (D + row) + D * col; const float* src = tensors1[col] + D * row; memcpy(dst, src, D * sizeof(float)); } } } void PrepareLSTMBias(const LoDTensor& B_forget, const LoDTensor& B_input, const LoDTensor& B_output, const LoDTensor& B_cell, LoDTensor* out) { std::array tensors{ B_forget.data(), B_input.data(), B_output.data(), B_cell.data()}; PADDLE_ENFORCE_EQ(B_forget.dims().size(), 1); int D = B_forget.dims()[0]; out->Resize(make_ddim({1, 4 * D})); auto* out_data = out->mutable_data(platform::CPUPlace()); for (size_t i = 0; i < tensors.size(); i++) { memcpy(out_data + D * i, tensors[i], D * sizeof(float)); } } // Parameters std::unique_ptr AttentionLSTMFusePass::ApplyImpl( std::unique_ptr graph) const { PDPattern external_pattern, subblock_pattern; // Use the following variables to tell whether this model is RNN1. // This fuse can only works on the RNN1 model. std::unordered_set specified_vars({"data_lod_attention", "cell_init", "hidden_init", "data", "week", "minute"}); size_t count = 0; for (auto* node : graph->Nodes()) { if (node->IsVar() && specified_vars.count(node->Name())) { ++count; } } if (count < specified_vars.size()) { return graph; } // Continue to fuse. FindWhileOp(graph.get()); return graph; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(attention_lstm_fuse_pass, paddle::framework::ir::AttentionLSTMFusePass);