/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/phi/common/data_type.h" #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) #include "paddle/fluid/inference/tensorrt/plugin/spmm_plugin.h" #endif #include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/phi/common/float16.h" using float16 = phi::dtype::float16; namespace paddle { namespace inference { namespace tensorrt { class TensorRTDynamicEngineTest : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"input", {16, 32, 1, 1}}}; std::map> max_input_shape = { {"input", {16, 32, 1, 1}}}; std::map> optim_input_shape = { {"input", {16, 32, 1, 1}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kHalf, nullptr, 0, min_input_shape, max_input_shape, optim_input_shape, false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector &input, std::vector output_shape) { paddle::framework::TensorFromVector(input, *ctx_, &input_); output_.Resize(phi::make_ddim(output_shape)); } void GetOutput(std::vector *output) { paddle::framework::TensorToVector(output_, *ctx_, output); } protected: phi::DenseTensor input_; phi::DenseTensor output_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicEngineTest, test_spmm) { // Weight in CPU memory. #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) float16 raw_weight[512]; for (int i = 0; i < 128; i++) { if (i % 16 <= 7) { raw_weight[4 * i] = float16(1.0); raw_weight[4 * i + 1] = float16(0.0); raw_weight[4 * i + 2] = float16(0.0); raw_weight[4 * i + 3] = float16(4.0); } else { raw_weight[4 * i] = float16(0.0); raw_weight[4 * i + 1] = float16(2.0); raw_weight[4 * i + 2] = float16(3.0); raw_weight[4 * i + 3] = float16(0.0); } } float16 raw_bias[16] = {float16(0), float16(1), float16(0), float16(2), float16(0), float16(3), float16(0), float16(4), float16(0), float16(5), float16(0), float16(6), float16(0), float16(7), float16(0), float16(8)}; std::vector buffers(2); // TRT binded inputs TensorRTEngine::Weight weight(nvinfer1::DataType::kHALF, raw_weight, 512); TensorRTEngine::Weight bias(nvinfer1::DataType::kHALF, raw_bias, 16); std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape() << std::endl; auto *x = engine_->DeclareInput( "input", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 32, 1, 1}); plugin::SpmmPluginDynamic::Activation act = plugin::SpmmPluginDynamic::Activation::kNone; plugin::SpmmPluginDynamic *plugin = new plugin::SpmmPluginDynamic("CustomSpmmPluginDynamic", nvinfer1::DataType::kHALF, 16, weight.get(), bias.get(), act); std::vector plugin_inputs; plugin_inputs.emplace_back(x); auto fc_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); LOG(INFO) << "create weights"; PADDLE_ENFORCE_NOT_NULL( fc_layer, platform::errors::InvalidArgument("TRT SPMM layer building failed.")); engine_->DeclareOutput(fc_layer, 0, "y"); engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 2); std::vector x_v(512); for (int i = 0; i < 128; i++) { x_v[4 * i] = float16(1.0); x_v[4 * i + 1] = float16(2.0); x_v[4 * i + 2] = float16(3.0); x_v[4 * i + 3] = float16(4.0); } std::vector y_cpu; PrepareInputOutput(x_v, {16, 16}); auto *x_v_gpu_data = input_.mutable_data(ctx_->GetPlace()); auto *y_gpu_data = output_.mutable_data(ctx_->GetPlace()); buffers[0] = reinterpret_cast(x_v_gpu_data); buffers[1] = reinterpret_cast(y_gpu_data); engine_->Execute(16, &buffers, ctx_->stream()); LOG(INFO) << "to get output"; GetOutput(&y_cpu); auto dims = engine_->GetITensor("y")->getDimensions(); ASSERT_EQ(dims.nbDims, 4); ASSERT_EQ(dims.d[1], 16); ASSERT_EQ(y_cpu[0], 136); ASSERT_EQ(y_cpu[1], 105); ASSERT_EQ(y_cpu[32], 136); ASSERT_EQ(y_cpu[64], 136); ASSERT_EQ(y_cpu[96], 136); #endif return; } class TensorRTDynamicTestFusedTokenPrune : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"attn", {4, 1, 4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> max_input_shape = { {"attn", {4, 1, 4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> optim_input_shape = { {"attn", {4, 1, 4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kHalf, nullptr, 0, min_input_shape, max_input_shape, optim_input_shape, false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector> inputs, std::vector> output_shapes) { LOG(INFO) << "PrepareInputOutput"; int num_inputs = inputs.size(); int num_outputs = output_shapes.size(); inputs_.resize(num_inputs); outputs_.resize(num_outputs); for (int i = 0; i < num_inputs; ++i) { paddle::framework::TensorFromVector(inputs[i], *ctx_, &inputs_[i]); } for (int i = 0; i < num_outputs; ++i) { outputs_[i].Resize(phi::make_ddim(output_shapes[i])); } } void GetOutput(std::vector &slimmed_x, // NOLINT std::vector &cls_inds) { // NOLINT paddle::framework::TensorToVector(outputs_[0], *ctx_, &slimmed_x); paddle::framework::TensorToVector(outputs_[1], *ctx_, &cls_inds); } protected: std::vector inputs_; std::vector outputs_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) { #if IS_TRT_VERSION_GE(8000) tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt(); auto *attn = engine_->DeclareInput( "attn", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 4, 4}); auto *x = engine_->DeclareInput( "x", nvinfer1::DataType::kHALF, nvinfer1::Dims3{-1, 4, 1}); auto *mask = engine_->DeclareInput( "mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 4, 4}); auto *new_mask = engine_->DeclareInput( "new_mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 2, 2}); plugin::FusedTokenPrunePluginDynamic *plugin = new plugin::FusedTokenPrunePluginDynamic(true, /*keep_first_token*/ false, /*keep_order*/ true, /*flag_varseqlen*/ false); std::vector itensors = {attn, x, mask, new_mask}; auto *layer = engine_->AddDynamicPlugin(itensors.data(), 4, plugin); PADDLE_ENFORCE_NOT_NULL(layer, platform::errors::InvalidArgument( "TRT fused_token_prune layer building failed.")); std::vector output_tensor_names{"out_slimmed_x", "out_cls_inds"}; for (size_t i = 0; i < 2; i++) { layer->getOutput(i)->setName(output_tensor_names[i].c_str()); engine_->DeclareOutput(layer, i, output_tensor_names[i]); } engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 6); LOG(INFO) << "create input"; std::vector attn_v(64); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { attn_v[i * 16 + j * 4 + k] = k; } } } std::vector x_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { x_v[i * 4 + j] = 1; } } std::vector mask_v(64); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { mask_v[i * 16 + j * 4 + k] = 1; } } } std::vector new_mask_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { new_mask_v[i * 4 + j * 2 + k] = 1; } } } LOG(INFO) << "create output"; std::vector out_slimmed_x_shape{4, 2, 1}; std::vector out_cls_ins_shape{4, 2}; PrepareInputOutput({attn_v, x_v, mask_v, new_mask_v}, {out_slimmed_x_shape, out_cls_ins_shape}); auto *attn_gpu_data = inputs_[0].mutable_data(ctx_->GetPlace()); auto *x_gpu_data = inputs_[1].mutable_data(ctx_->GetPlace()); auto *mask_gpu_data = inputs_[2].mutable_data(ctx_->GetPlace()); auto *new_mask_gpu_data = inputs_[3].mutable_data(ctx_->GetPlace()); auto *slimmed_x_gpu_data = outputs_[0].mutable_data(ctx_->GetPlace()); auto *cls_inds_gpu_data = outputs_[1].mutable_data(ctx_->GetPlace()); LOG(INFO) << "create buffers"; std::vector buffers(6); buffers[0] = reinterpret_cast(attn_gpu_data); buffers[1] = reinterpret_cast(x_gpu_data); buffers[2] = reinterpret_cast(mask_gpu_data); buffers[3] = reinterpret_cast(new_mask_gpu_data); buffers[4] = reinterpret_cast(slimmed_x_gpu_data); buffers[5] = reinterpret_cast(cls_inds_gpu_data); LOG(INFO) << "Execute"; engine_->Execute(4, &buffers, ctx_->stream()); std::vector slimmed_x_v; std::vector cls_inds_v; LOG(INFO) << "GetOutput"; GetOutput(slimmed_x_v, cls_inds_v); ASSERT_EQ(cls_inds_v[0], 2); ASSERT_EQ(cls_inds_v[1], 3); ASSERT_EQ(cls_inds_v[2], 2); ASSERT_EQ(cls_inds_v[3], 3); ASSERT_EQ(cls_inds_v[4], 2); ASSERT_EQ(cls_inds_v[5], 3); ASSERT_EQ(cls_inds_v[6], 2); ASSERT_EQ(cls_inds_v[7], 3); LOG(INFO) << "finish"; #endif } } // namespace tensorrt } // namespace inference } // namespace paddle