/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/inference/tensorrt/convert/io_converter.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/place.h" USE_OP(relu); namespace paddle { namespace inference { namespace tensorrt { void Compare(const std::string op_type, float input, float expect) { framework::Scope scope; platform::CUDAPlace place; platform::CUDADeviceContext ctx(place); // init fluid op and variable auto x_var = scope.Var("X"); auto x_tensor = x_var->GetMutable(); x_tensor->Resize({1, 1}); x_tensor->mutable_data(place); std::vector init; init.push_back(input); framework::TensorFromVector(init, ctx, x_tensor); auto out_var = scope.Var("Out"); auto out_tensor = out_var->GetMutable(); out_tensor->Resize({1, 1}); out_tensor->mutable_data(place); framework::OpDesc op_desc; op_desc.SetType(op_type); op_desc.SetInput("X", {"X"}); op_desc.SetOutput("Out", {"Out"}); auto op = framework::OpRegistry::CreateOp(op_desc); // run fluid op op->Run(scope, place); // get fluid output std::vector out1; framework::TensorToVector(*out_tensor, ctx, &out1); // init tensorrt op cudaStream_t stream; ASSERT_EQ(0, cudaStreamCreate(&stream)); TensorRTEngine* engine = new TensorRTEngine(1, 1 << 10, &stream); engine->InitNetwork(); engine->DeclareInput("X", nvinfer1::DataType::kFLOAT, nvinfer1::DimsCHW{1, 1, 1}); // convert op OpConverter op_converter; op_converter.ConvertOp(op_desc, engine); engine->DeclareOutput("Out"); engine->FreezeNetwork(); // convert LoDTensor to ITensor size_t size = x_tensor->memory_size(); EngineIOConverter::ConvertInput(op_type, *x_tensor, engine->buffer("X").buffer, size, &stream); // run tensorrt Outp engine->Execute(1); // convert ITensor to LoDTensor EngineIOConverter::ConvertOutput(op_type, engine->buffer("Out").buffer, out_tensor, size, &stream); // get tensorrt output std::vector out2; framework::TensorToVector(*out_tensor, ctx, &out2); // compare ASSERT_EQ(out1[0], out2[0]); ASSERT_EQ(out1[0], expect); delete engine; cudaStreamDestroy(stream); } TEST(OpConverter, ConvertRelu) { Compare("relu", 1, 1); // relu(1) = 1 Compare("relu", -5, 0); // relu(-5) = 0 } } // namespace tensorrt } // namespace inference } // namespace paddle