// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once /*! \file paddle_api.h */ /*! \mainpage Paddle Inference APIs * \section intro_sec Introduction * The Paddle inference library aims to offer an high performance inference SDK * for Paddle users. */ #include #include #include #include /*! \namespace paddle */ namespace paddle { /** paddle data type. */ enum PaddleDType { FLOAT32, INT64, INT32, // TODO(Superjomn) support more data types if needed. }; /** * \brief Memory manager for `PaddleTensor`. * * The PaddleBuf holds a buffer for data input or output. The memory can be * allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf * should be reused for better performance. * * For user allocated memory, the following API can be used: * - PaddleBuf(void* data, size_t length) to set an external memory by * specifying the memory address and length. * - Reset(void* data, size_t length) to reset the PaddleBuf with an external *memory. * ATTENTION, for user allocated memory, deallocation should be done by users *externally after the program finished. The PaddleBuf won't do any allocation *or deallocation. * * To have the PaddleBuf allocate and manage the memory: * - PaddleBuf(size_t length) will allocate a memory of size `length`. * - Resize(size_t length) resize the memory to no less than `length`, ATTENTION * if the allocated memory is larger than `length`, nothing will done. * * Usage: * * Let PaddleBuf manage the memory internally. * \code{cpp} * const int num_elements = 128; * PaddleBuf buf(num_elements * sizeof(float)); * \endcode * * Or * \code{cpp} * PaddleBuf buf; * buf.Resize(num_elements * sizeof(float)); * \endcode * Works the exactly the same. * * One can also make the `PaddleBuf` use the external memory. * \code{cpp} * PaddleBuf buf; * void* external_memory = new float[num_elements]; * buf.Reset(external_memory, num_elements*sizeof(float)); * ... * delete[] external_memory; // manage the memory lifetime outside. * \endcode */ class PaddleBuf { public: /** PaddleBuf allocate memory internally, and manage it. */ explicit PaddleBuf(size_t length) : data_(new char[length]), length_(length), memory_owned_(true) {} /** Set external memory, the PaddleBuf won't manage it. */ PaddleBuf(void* data, size_t length) : data_(data), length_(length), memory_owned_{false} {} /** Copy only available when memory is managed externally. */ explicit PaddleBuf(const PaddleBuf&); /** Resize the memory. */ void Resize(size_t length); /** Reset to external memory, with address and length set. */ void Reset(void* data, size_t length); /** Tell whether the buffer is empty. */ bool empty() const { return length_ == 0; } /** Get the data's memory address. */ void* data() const { return data_; } /** Get the memory length. */ size_t length() const { return length_; } ~PaddleBuf() { Free(); } PaddleBuf& operator=(const PaddleBuf&); PaddleBuf& operator=(PaddleBuf&&); PaddleBuf() = default; PaddleBuf(PaddleBuf&& other); private: void Free(); void* data_{nullptr}; // pointer to the data memory. size_t length_{0}; // number of memory bytes. bool memory_owned_{true}; }; /** Basic input and output data structure for PaddlePredictor. */ struct PaddleTensor { PaddleTensor() = default; std::string name; // variable name. std::vector shape; PaddleBuf data; // blob of data. PaddleDType dtype; std::vector> lod; // Tensor+LoD equals LoDTensor }; enum class PaddlePlace { kUNK = -1, kCPU, kGPU }; /** Tensor without copy, currently only supports `AnalysisPredictor`. */ class ZeroCopyTensor { public: void Reshape(const std::vector& shape); /** Get the memory in CPU or GPU with specific data type, should Reshape first * to tell the data size. * Once can directly call this data to feed the data. * This is for write the input tensor. */ template T* mutable_data(PaddlePlace place); /** Get the memory directly, will return the place and element size by * pointer. * This is for reading the output tensor. */ template T* data(PaddlePlace* place, int* size) const; template void copy_from_cpu(const T* data); template void copy_to_cpu(T* data); std::vector shape() const; void SetLoD(const std::vector>& x); std::vector> lod() const; const std::string& name() const { return name_; } void SetPlace(PaddlePlace place, int device = -1) { place_ = place; device_ = device; } PaddleDType type(); protected: explicit ZeroCopyTensor(void* scope) : scope_{scope} {} void SetName(const std::string& name) { name_ = name; } void* FindTensor() const; private: std::string name_; bool input_or_output_; friend class AnalysisPredictor; void* scope_{nullptr}; // The corresponding tensor pointer inside Paddle workspace is cached for // performance. mutable void* tensor_{nullptr}; PaddlePlace place_; PaddleDType dtype_; int device_; }; /** A simple Inference API for Paddle. */ class PaddlePredictor { public: struct Config; PaddlePredictor() = default; PaddlePredictor(const PaddlePredictor&) = delete; PaddlePredictor& operator=(const PaddlePredictor&) = delete; /** Predict an record. * The caller should be responsible for allocating and releasing the memory of * `inputs`. `inputs` should be available until Run returns. Caller should be * responsible for the output tensor's buffer, either allocated or passed from * outside. */ virtual bool Run(const std::vector& inputs, std::vector* output_data, int batch_size = -1) = 0; /** \brief Get input names of the model */ virtual std::vector GetInputNames() { return {}; } /** \brief Get output names of the model */ virtual std::vector GetOutputNames() { return {}; } /** \brief Get a mutable tensor directly. * * NOTE Only works in AnalysisPredictor. * * One can also use this to modify any temporary variable related tensors in * the predictor. * */ virtual std::unique_ptr GetInputTensor( const std::string& name) { return nullptr; } /** * \brief Get an immutable tensor without copy. * * NOTE Only works in AnalysisPredictor. * One can use this API to get any temporary tensors in the predictor and * read it. */ virtual std::unique_ptr GetOutputTensor( const std::string& name) { return nullptr; } /** * \brief Run the predictor with zero-copied inputs and outputs. * * NOTE Only works in AnalysisPredictor. * * This will save the IO copy for transfering inputs and outputs to predictor * workspace and get some performance improvement. * To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)` * and then use the `GetInputTensor` and `GetOutputTensor` to directly write * or read the input/output tensors. */ virtual bool ZeroCopyRun() { return false; } /** Clone a predictor that share the model weights, the Cloned predictor * should be thread-safe. */ virtual std::unique_ptr Clone() = 0; /** Destroy the Predictor. */ virtual ~PaddlePredictor() = default; /** \brief Get the serialized model program that executes in inference phase. * Its data type is ProgramDesc, which is a protobuf message. */ virtual std::string GetSerializedProgram() const { assert(false); // Force raise error. return "NotImplemented"; } /** The common configs for all the predictors. */ struct Config { std::string model_dir; /*!< path to the model directory. */ }; }; struct NativeConfig : public PaddlePredictor::Config { // GPU related fields. bool use_gpu{false}; int device{0}; float fraction_of_gpu_memory{ -1.f}; /*!< Change to a float in (0,1] if needed. */ // Specify the exact path of program and parameter files. std::string prog_file; std::string param_file; /** Specify the variable's name of each input if input tensors don't follow * the * `feeds` and `fetches` of the phase `save_inference_model`. */ bool specify_input_name{false}; /** Set and get the number of cpu math library threads. */ void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) { cpu_math_library_num_threads_ = cpu_math_library_num_threads; } int cpu_math_library_num_threads() const { return cpu_math_library_num_threads_; } protected: // number of cpu math library (such as MKL, OpenBlas) threads for each // instance. int cpu_math_library_num_threads_{1}; }; /*! \fn std::unique_ptr CreatePaddlePredictor(const ConfigT& * config); * * \brief A factory to help create different predictors. * * Usage: * * \code{.cpp} * NativeConfig config; * ... // change the configs. * auto native_predictor = CreatePaddlePredictor(config); * \endcode * * FOR EXTENSION DEVELOPER: * Different predictors are designated by config type. Similar configs can be * merged, but there shouldn't be a huge config containing different fields for * more than one kind of predictors. */ template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); /** NOTE The following APIs are too trivial, we will discard it in the following * versions. */ enum class PaddleEngineKind { kNative = 0, /*!< Use the native Fluid facility. */ kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */ kAnalysis, /*!< More optimization. */ kAnakin /*!< Use Anakin for inference, not mature yet. */ }; template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); int PaddleDtypeSize(PaddleDType dtype); std::string get_version(); } // namespace paddle