# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16 import paddle import paddle.fluid.core as core import paddle.nn.functional as F np.random.seed(10) def ref_log_softmax(x): shiftx = (x - np.max(x)) out = shiftx - np.log(np.exp(shiftx).sum()) return out def ref_log_softmax_grad(x, axis): if axis < 0: axis += len(x.shape) out = np.apply_along_axis(ref_log_softmax, axis, x) axis_dim = x.shape[axis] dout = np.full_like(x, fill_value=1. / x.size) dx = dout - np.exp(out) * dout.copy().sum(axis=axis, keepdims=True).repeat( axis_dim, axis=axis) return dx class TestLogSoftmaxOp(OpTest): def setUp(self): self.op_type = 'log_softmax' self.dtype = 'float64' self.shape = [2, 3, 4, 5] self.axis = -1 self.set_attrs() x = np.random.uniform(0.1, 1., self.shape).astype(self.dtype) out = np.apply_along_axis(ref_log_softmax, self.axis, x) self.x_grad = ref_log_softmax_grad(x, self.axis) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'axis': self.axis} def set_attrs(self): pass def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], ['Out'], user_defined_grads=[self.x_grad]) class TestLogSoftmaxShape(TestLogSoftmaxOp): def set_attrs(self): self.shape = [12, 10] class TestLogSoftmaxAxis(TestLogSoftmaxOp): def set_attrs(self): self.axis = 1 @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestLogSoftmaxBF16Op(OpTest): def setUp(self): self.op_type = 'log_softmax' self.dtype = np.uint16 self.shape = [2, 3, 4, 5] self.axis = -1 x = np.random.uniform(0.1, 1., self.shape).astype(np.float32) out = np.apply_along_axis(ref_log_softmax, self.axis, x) self.x_grad = ref_log_softmax_grad(x, self.axis) self.inputs = {'X': convert_float_to_uint16(x)} self.outputs = {'Out': convert_float_to_uint16(out)} self.attrs = {'axis': self.axis} def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place) def test_check_grad(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['X'], ['Out'], user_defined_grads=[self.x_grad]) class TestNNLogSoftmaxAPI(unittest.TestCase): def setUp(self): self.x_shape = [2, 3, 4, 5] self.x = np.random.uniform(-1., 1., self.x_shape).astype(np.float32) self.place = paddle.CUDAPlace(0) \ if paddle.fluid.core.is_compiled_with_cuda() \ else paddle.CPUPlace() def check_api(self, axis=-1): ref_out = np.apply_along_axis(ref_log_softmax, axis, self.x) logsoftmax = paddle.nn.LogSoftmax(axis) # test static api with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data(name='x', shape=self.x_shape) y = logsoftmax(x) exe = paddle.static.Executor(self.place) out = exe.run(feed={'x': self.x}, fetch_list=[y]) self.assertTrue(np.allclose(out[0], ref_out)) # test dygrapg api paddle.disable_static() x = paddle.to_tensor(self.x) y = logsoftmax(x) self.assertTrue(np.allclose(y.numpy(), ref_out)) paddle.enable_static() def test_check_api(self): for axis in [-1, 1]: self.check_api(axis) class TestNNFunctionalLogSoftmaxAPI(unittest.TestCase): def setUp(self): self.x_shape = [2, 3, 4, 5] self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) self.place = paddle.CUDAPlace(0) \ if paddle.fluid.core.is_compiled_with_cuda() \ else paddle.CPUPlace() def check_api(self, axis=-1, dtype=None): x = self.x.copy() if dtype is not None: x = x.astype(dtype) ref_out = np.apply_along_axis(ref_log_softmax, axis, x) with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data(name='x', shape=self.x_shape) y = F.log_softmax(x, axis, dtype) exe = paddle.static.Executor(self.place) out = exe.run(feed={'x': self.x}, fetch_list=[y]) self.assertTrue(np.allclose(out[0], ref_out)) paddle.disable_static() x = paddle.to_tensor(self.x) y = F.log_softmax(x, axis, dtype) self.assertTrue(np.allclose(y.numpy(), ref_out), True) paddle.enable_static() def test_check_api(self): for axis in [-1, 1]: self.check_api(axis) self.check_api(-1, 'float64') def test_errors(self): with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data(name='X1', shape=[100], dtype='int32') self.assertRaises(TypeError, F.log_softmax, x) x = paddle.fluid.data(name='X2', shape=[100], dtype='float32') self.assertRaises(TypeError, F.log_softmax, x, dtype='int32') if __name__ == "__main__": unittest.main()