/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/memory/detail/buddy_allocator.h" #include "glog/logging.h" namespace paddle { namespace memory { namespace detail { BuddyAllocator::BuddyAllocator(SystemAllocator* system_allocator, size_t min_chunk_size, size_t max_chunk_size) : min_chunk_size_(min_chunk_size), max_chunk_size_(max_chunk_size), cache_(system_allocator->UseGpu()), system_allocator_(std::move(system_allocator)) {} BuddyAllocator::~BuddyAllocator() { DLOG(INFO) << "BuddyAllocator Disconstructor makes sure that all of these " "have actually been freed"; while (!pool_.empty()) { auto block = static_cast(std::get<2>(*pool_.begin())); DLOG(INFO) << "Free from block (" << block << ", " << max_chunk_size_ << ")"; system_allocator_->Free(block, max_chunk_size_, block->index(cache_)); cache_.invalidate(block); pool_.erase(pool_.begin()); } } inline size_t align(size_t size, size_t alignment) { size_t remaining = size % alignment; return remaining == 0 ? size : size + (alignment - remaining); } void* BuddyAllocator::Alloc(size_t unaligned_size) { // adjust allocation alignment size_t size = align(unaligned_size + sizeof(Metadata), min_chunk_size_); // acquire the allocator lock std::lock_guard lock(mutex_); DLOG(INFO) << "Allocate " << unaligned_size << " bytes from chunk size " << size; // if the allocation is huge, send directly to the system allocator if (size > max_chunk_size_) { DLOG(INFO) << "Allocate from system allocator."; return SystemAlloc(size); } // query and allocate from the existing chunk auto it = FindExistChunk(size); // refill the pool if failure if (it == pool_.end()) { it = RefillPool(); // if still failure, fail fatally if (it == pool_.end()) { return nullptr; } } else { DLOG(INFO) << "Allocation from existing memory block " << std::get<2>(*it) << " at address " << reinterpret_cast(std::get<2>(*it))->data(); } total_used_ += size; total_free_ -= size; // split the allocation and return data for use return reinterpret_cast(SplitToAlloc(it, size))->data(); } void BuddyAllocator::Free(void* p) { // Point back to metadata auto block = static_cast(p)->metadata(); // Acquire the allocator lock std::lock_guard lock(mutex_); DLOG(INFO) << "Free from address " << block; if (block->type(cache_) == MemoryBlock::HUGE_CHUNK) { DLOG(INFO) << "Free directly from system allocator"; system_allocator_->Free(block, block->total_size(cache_), block->index(cache_)); // Invalidate GPU allocation from cache cache_.invalidate(block); return; } block->mark_as_free(cache_); total_used_ -= block->total_size(cache_); total_free_ += block->total_size(cache_); // Trying to merge the right buddy if (block->has_right_buddy(cache_)) { DLOG(INFO) << "Merging this block " << block << " with its right buddy " << block->right_buddy(cache_); auto right_buddy = block->right_buddy(cache_); if (right_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) { // Take away right buddy from pool pool_.erase(IndexSizeAddress(right_buddy->index(cache_), right_buddy->total_size(cache_), right_buddy)); // merge its right buddy to the block block->merge(cache_, right_buddy); } } // Trying to merge the left buddy if (block->has_left_buddy(cache_)) { DLOG(INFO) << "Merging this block " << block << " with its left buddy " << block->left_buddy(cache_); auto left_buddy = block->left_buddy(cache_); if (left_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) { // Take away right buddy from pool pool_.erase(IndexSizeAddress(left_buddy->index(cache_), left_buddy->total_size(cache_), left_buddy)); // merge the block to its left buddy left_buddy->merge(cache_, block); block = left_buddy; } } // Dumping this block into pool DLOG(INFO) << "Inserting free block (" << block << ", " << block->total_size(cache_) << ")"; pool_.insert( IndexSizeAddress(block->index(cache_), block->total_size(cache_), block)); // Clean up if existing too much free memory // Prefer freeing fallback allocation first CleanIdleFallBackAlloc(); // Free normal allocation CleanIdleNormalAlloc(); } size_t BuddyAllocator::Used() { return total_used_; } void* BuddyAllocator::SystemAlloc(size_t size) { size_t index = 0; void* p = system_allocator_->Alloc(index, size); DLOG(INFO) << "Allocated " << p << " from system allocator."; if (p == nullptr) return nullptr; static_cast(p)->init(cache_, MemoryBlock::HUGE_CHUNK, index, size, nullptr, nullptr); return static_cast(p)->data(); } BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() { #ifndef PADDLE_ONLY_CPU if (system_allocator_->UseGpu()) { if ((total_used_ + total_free_) == 0) { // Compute the maximum allocation size for the first allocation. max_chunk_size_ = platform::GpuMaxChunkSize(); } } #endif // PADDLE_ONLY_CPU // Allocate a new maximum sized block size_t index = 0; void* p = system_allocator_->Alloc(index, max_chunk_size_); if (p == nullptr) return pool_.end(); DLOG(INFO) << "Creating and inserting new block " << p << " from system allocator"; static_cast(p)->init(cache_, MemoryBlock::FREE_CHUNK, index, max_chunk_size_, nullptr, nullptr); // gpu fallback allocation if (system_allocator_->UseGpu() && static_cast(p)->index(cache_) == 1) { fallback_alloc_count_++; } total_free_ += max_chunk_size_; // dump the block into pool return pool_.insert(IndexSizeAddress(index, max_chunk_size_, p)).first; } BuddyAllocator::PoolSet::iterator BuddyAllocator::FindExistChunk(size_t size) { size_t index = 0; while (1) { auto it = pool_.lower_bound(IndexSizeAddress(index, size, nullptr)); // no match chunk memory if (it == pool_.end()) return it; if (std::get<0>(*it) > index) { // find suitable one if (std::get<1>(*it) >= size) { return it; } // update and continue index = std::get<0>(*it); continue; } return it; } } void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it, size_t size) { auto block = static_cast(std::get<2>(*it)); pool_.erase(it); DLOG(INFO) << "Split block (" << block << ", " << block->total_size(cache_) << ") into"; block->split(cache_, size); DLOG(INFO) << "Left block (" << block << ", " << block->total_size(cache_) << ")"; block->set_type(cache_, MemoryBlock::ARENA_CHUNK); // the rest of memory if exist if (block->has_right_buddy(cache_)) { if (block->right_buddy(cache_)->type(cache_) == MemoryBlock::FREE_CHUNK) { DLOG(INFO) << "Insert right block (" << block->right_buddy(cache_) << ", " << block->right_buddy(cache_)->total_size(cache_) << ")"; pool_.insert( IndexSizeAddress(block->right_buddy(cache_)->index(cache_), block->right_buddy(cache_)->total_size(cache_), block->right_buddy(cache_))); } } return block; } void BuddyAllocator::CleanIdleFallBackAlloc() { // If fallback allocation does not exist, return directly if (!fallback_alloc_count_) return; for (auto pool = pool_.rbegin(); pool != pool_.rend();) { // If free memory block less than max_chunk_size_, return directly if (std::get<1>(*pool) < max_chunk_size_) return; MemoryBlock* block = static_cast(std::get<2>(*pool)); // If no GPU fallback allocator, return if (!system_allocator_->UseGpu() || block->index(cache_) == 0) { return; } DLOG(INFO) << "Return block " << block << " to fallback allocator."; system_allocator_->Free(block, max_chunk_size_, block->index(cache_)); cache_.invalidate(block); pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base())); total_free_ -= max_chunk_size_; fallback_alloc_count_--; // If no fall allocation exists, return directly if (!fallback_alloc_count_) return; } } void BuddyAllocator::CleanIdleNormalAlloc() { auto shall_free_alloc = [&]() -> bool { // free all fallback allocations if (fallback_alloc_count_ > 0) { return true; } // keep 2x overhead if we haven't fallen back if ((total_used_ + max_chunk_size_) * 2 < total_free_) { return true; } return false; }; if (!shall_free_alloc()) return; for (auto pool = pool_.rbegin(); pool != pool_.rend();) { // If free memory block less than max_chunk_size_, return directly if (std::get<1>(*pool) < max_chunk_size_) return; MemoryBlock* block = static_cast(std::get<2>(*pool)); DLOG(INFO) << "Return block " << block << " to base allocator."; system_allocator_->Free(block, max_chunk_size_, block->index(cache_)); cache_.invalidate(block); pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base())); total_free_ -= max_chunk_size_; if (!shall_free_alloc()) return; } } } // namespace detail } // namespace memory } // namespace paddle