# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import scipy.stats import config from config import (ATOL, DEVICES, RTOL, TEST_CASE_NAME, parameterize, place, xrand) @place(DEVICES) @parameterize( (TEST_CASE_NAME, 'concentration'), [ ('test-one-dim', config.xrand((89, ))), # ('test-multi-dim', config.xrand((10, 20, 30))) ]) class TestDirichlet(unittest.TestCase): def setUp(self): self._paddle_diric = paddle.distribution.Dirichlet( paddle.to_tensor(self.concentration)) def test_mean(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_diric.mean, scipy.stats.dirichlet.mean(self.concentration), rtol=RTOL.get(str(self.concentration.dtype)), atol=ATOL.get(str(self.concentration.dtype))) def test_variance(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_diric.variance, scipy.stats.dirichlet.var(self.concentration), rtol=RTOL.get(str(self.concentration.dtype)), atol=ATOL.get(str(self.concentration.dtype))) def test_prob(self): value = [np.random.rand(*self.concentration.shape)] value = [v / v.sum() for v in value] for v in value: with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_diric.prob(paddle.to_tensor(v)), scipy.stats.dirichlet.pdf(v, self.concentration), rtol=RTOL.get(str(self.concentration.dtype)), atol=ATOL.get(str(self.concentration.dtype))) def test_log_prob(self): value = [np.random.rand(*self.concentration.shape)] value = [v / v.sum() for v in value] for v in value: with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_diric.log_prob(paddle.to_tensor(v)), scipy.stats.dirichlet.logpdf(v, self.concentration), rtol=RTOL.get(str(self.concentration.dtype)), atol=ATOL.get(str(self.concentration.dtype))) def test_entropy(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_diric.entropy(), scipy.stats.dirichlet.entropy(self.concentration), rtol=RTOL.get(str(self.concentration.dtype)), atol=ATOL.get(str(self.concentration.dtype))) def test_natural_parameters(self): self.assertTrue( isinstance(self._paddle_diric._natural_parameters, tuple)) def test_log_normalizer(self): self.assertTrue( np.all( self._paddle_diric._log_normalizer( paddle.to_tensor(config.xrand((100, 100, 100)))).numpy() < 0.0)) @place(DEVICES) @parameterize((TEST_CASE_NAME, 'concentration'), [('test-zero-dim', np.array(1.0))]) class TestDirichletException(unittest.TestCase): def TestInit(self): with self.assertRaises(ValueError): paddle.distribution.Dirichlet( paddle.squeeze(self.concentration))