# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import warnings import paddle.nn as nn import numpy as np from .static_flops import static_flops __all__ = ['flops'] def flops(net, input_size, custom_ops=None, print_detail=False): """Print a table about the FLOPs of network. Args: net (paddle.nn.Layer||paddle.static.Program): The network which could be a instance of paddle.nn.Layer in dygraph or paddle.static.Program in static graph. input_size (list): size of input tensor. Note that the batch_size in argument 'input_size' only support 1. custom_ops (A dict of function, optional): A dictionary which key is the class of specific operation such as paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This argument only work when argument 'net' is an instance of paddle.nn.Layer. The details could be found in following example code. Default is None. print_detail (bool, optional): Whether to print the detail information, like FLOPs per layer, about the net FLOPs. Default is False. Returns: Int: A number about the FLOPs of total network. Examples: .. code-block:: python import paddle import paddle.nn as nn class LeNet(nn.Layer): def __init__(self, num_classes=10): super(LeNet, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2D(2, 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2D(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x lenet = LeNet() # m is the instance of nn.Layer, x is the intput of layer, y is the output of layer. def count_leaky_relu(m, x, y): x = x[0] nelements = x.numel() m.total_ops += int(nelements) FLOPs = paddle.flops(lenet, [1, 1, 28, 28], custom_ops= {nn.LeakyReLU: count_leaky_relu}, print_detail=True) print(FLOPs) #+--------------+-----------------+-----------------+--------+--------+ #| Layer Name | Input Shape | Output Shape | Params | Flops | #+--------------+-----------------+-----------------+--------+--------+ #| conv2d_2 | [1, 1, 28, 28] | [1, 6, 28, 28] | 60 | 47040 | #| re_lu_2 | [1, 6, 28, 28] | [1, 6, 28, 28] | 0 | 0 | #| max_pool2d_2 | [1, 6, 28, 28] | [1, 6, 14, 14] | 0 | 0 | #| conv2d_3 | [1, 6, 14, 14] | [1, 16, 10, 10] | 2416 | 241600 | #| re_lu_3 | [1, 16, 10, 10] | [1, 16, 10, 10] | 0 | 0 | #| max_pool2d_3 | [1, 16, 10, 10] | [1, 16, 5, 5] | 0 | 0 | #| linear_0 | [1, 400] | [1, 120] | 48120 | 48000 | #| linear_1 | [1, 120] | [1, 84] | 10164 | 10080 | #| linear_2 | [1, 84] | [1, 10] | 850 | 840 | #+--------------+-----------------+-----------------+--------+--------+ #Total Flops: 347560 Total Params: 61610 """ if isinstance(net, nn.Layer): inputs = paddle.randn(input_size) return dynamic_flops( net, inputs=inputs, custom_ops=custom_ops, print_detail=print_detail) elif isinstance(net, paddle.static.Program): return static_flops(net, print_detail=print_detail) else: warnings.warn( "Your model must be an instance of paddle.nn.Layer or paddle.static.Program." ) return -1 def count_convNd(m, x, y): x = x[0] kernel_ops = np.product(m.weight.shape[2:]) bias_ops = 1 if m.bias is not None else 0 total_ops = int(y.numel()) * ( x.shape[1] / m._groups * kernel_ops + bias_ops) m.total_ops += total_ops def count_leaky_relu(m, x, y): x = x[0] nelements = x.numel() m.total_ops += int(nelements) def count_bn(m, x, y): x = x[0] nelements = x.numel() if not m.training: total_ops = 2 * nelements m.total_ops += int(total_ops) def count_linear(m, x, y): total_mul = m.weight.shape[0] num_elements = y.numel() total_ops = total_mul * num_elements m.total_ops += int(total_ops) def count_avgpool(m, x, y): kernel_ops = 1 num_elements = y.numel() total_ops = kernel_ops * num_elements m.total_ops += int(total_ops) def count_adap_avgpool(m, x, y): kernel = np.array(x[0].shape[2:]) // np.array(y.shape[2:]) total_add = np.product(kernel) total_div = 1 kernel_ops = total_add + total_div num_elements = y.numel() total_ops = kernel_ops * num_elements m.total_ops += int(total_ops) def count_zero_ops(m, x, y): m.total_ops += int(0) def count_parameters(m, x, y): total_params = 0 for p in m.parameters(): total_params += p.numel() m.total_params[0] = int(total_params) def count_io_info(m, x, y): m.register_buffer('input_shape', paddle.to_tensor(x[0].shape)) m.register_buffer('output_shape', paddle.to_tensor(y.shape)) register_hooks = { nn.Conv1D: count_convNd, nn.Conv2D: count_convNd, nn.Conv3D: count_convNd, nn.Conv1DTranspose: count_convNd, nn.Conv2DTranspose: count_convNd, nn.Conv3DTranspose: count_convNd, nn.layer.norm.BatchNorm2D: count_bn, nn.BatchNorm: count_bn, nn.ReLU: count_zero_ops, nn.ReLU6: count_zero_ops, nn.LeakyReLU: count_leaky_relu, nn.Linear: count_linear, nn.Dropout: count_zero_ops, nn.AvgPool1D: count_avgpool, nn.AvgPool2D: count_avgpool, nn.AvgPool3D: count_avgpool, nn.AdaptiveAvgPool1D: count_adap_avgpool, nn.AdaptiveAvgPool2D: count_adap_avgpool, nn.AdaptiveAvgPool3D: count_adap_avgpool } def dynamic_flops(model, inputs, custom_ops=None, print_detail=False): handler_collection = [] types_collection = set() if custom_ops is None: custom_ops = {} def add_hooks(m): if len(list(m.children())) > 0: return m.register_buffer('total_ops', paddle.zeros([1], dtype='int32')) m.register_buffer('total_params', paddle.zeros([1], dtype='int32')) m_type = type(m) flops_fn = None if m_type in custom_ops: flops_fn = custom_ops[m_type] if m_type not in types_collection: print("Customize Function has been appied to {}".format(m_type)) elif m_type in register_hooks: flops_fn = register_hooks[m_type] if m_type not in types_collection: print("{}'s flops has been counted".format(m_type)) else: if m_type not in types_collection: print( "Cannot find suitable count function for {}. Treat it as zero Macs.". format(m_type)) if flops_fn is not None: flops_handler = m.register_forward_post_hook(flops_fn) handler_collection.append(flops_handler) params_handler = m.register_forward_post_hook(count_parameters) io_handler = m.register_forward_post_hook(count_io_info) handler_collection.append(params_handler) handler_collection.append(io_handler) types_collection.add(m_type) training = model.training model.eval() model.apply(add_hooks) with paddle.framework.no_grad(): model(inputs) total_ops = 0 total_params = 0 for m in model.sublayers(): if len(list(m.children())) > 0: continue total_ops += m.total_ops total_params += m.total_params total_ops = int(total_ops) total_params = int(total_params) if training: model.train() for handler in handler_collection: handler.remove() try: from prettytable import PrettyTable except ImportError: raise ImportError( "paddle.flops() requires package `prettytable`, place install it firstly using `pip install prettytable`. " ) table = PrettyTable( ["Layer Name", "Input Shape", "Output Shape", "Params", "Flops"]) for n, m in model.named_sublayers(): if len(list(m.children())) > 0: continue if "total_ops" in m._buffers: table.add_row([ m.full_name(), list(m.input_shape.numpy()), list(m.output_shape.numpy()), int(m.total_params), int(m.total_ops) ]) m._buffers.pop("total_ops") m._buffers.pop("total_params") m._buffers.pop('input_shape') m._buffers.pop('output_shape') if (print_detail): print(table) print('Total Flops: {} Total Params: {}'.format(total_ops, total_params)) return total_ops