# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import numpy as np import numbers import paddle import paddle.nn as nn from paddle.static import InputSpec from collections import OrderedDict __all__ = ['summary'] def summary(net, input_size, dtypes=None): """Prints a string summary of the network. Args: net (Layer): the network which must be a subinstance of Layer. input_size (tuple|InputSpec|list[tuple|InputSpec]): size of input tensor. if model only have one input, input_size can be tuple or InputSpec. if model have multiple input, input_size must be a list which contain every input's shape. Note that input_size only dim of batch_size can be None or -1. dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None. Returns: Dict: a summary of the network including total params and total trainable params. Examples: .. code-block:: python import paddle import paddle.nn as nn class LeNet(nn.Layer): def __init__(self, num_classes=10): super(LeNet, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2d( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2d(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x lenet = LeNet() params_info = paddle.summary(lenet, (1, 1, 28, 28)) print(params_info) """ if isinstance(input_size, InputSpec): _input_size = tuple(input_size.shape) elif isinstance(input_size, list): _input_size = [] for item in input_size: if isinstance(item, int): item = (item, ) assert isinstance(item, (tuple, InputSpec)), 'When input_size is list, \ expect item in input_size is a tuple or InputSpec, but got {}'.format( type(item)) if isinstance(item, InputSpec): _input_size.append(tuple(item.shape)) else: _input_size.append(item) elif isinstance(input_size, int): _input_size = (input_size, ) else: _input_size = input_size if not paddle.in_dynamic_mode(): warnings.warn( "Your model was created in static mode, this may not get correct summary information!" ) in_train_mode = False else: in_train_mode = net.training if in_train_mode: net.eval() def _is_shape(shape): for item in shape: if isinstance(item, (list, tuple)): return False return True def _check_shape(shape): num_unknown = 0 new_shape = [] for i in range(len(shape)): item = shape[i] if item is None or item == -1: num_unknown += 1 if num_unknown > 1: raise ValueError( 'Option input_size only the dim of batch_size can be None or -1.' ) item = 1 elif isinstance(item, numbers.Number): if item <= 0: raise ValueError( "Expected element in input size greater than zero, but got {}". format(item)) new_shape.append(item) return tuple(new_shape) def _check_input(input_size): if isinstance(input_size, (list, tuple)) and _is_shape(input_size): return _check_shape(input_size) else: return [_check_input(i) for i in input_size] _input_size = _check_input(_input_size) result, params_info = summary_string(net, _input_size, dtypes) print(result) if in_train_mode: net.train() return params_info @paddle.no_grad() def summary_string(model, input_size, dtypes=None): def _all_is_numper(items): for item in items: if not isinstance(item, numbers.Number): return False return True def _build_dtypes(input_size, dtype): if dtype is None: dtype = 'float32' if isinstance(input_size, (list, tuple)) and _all_is_numper(input_size): return [dtype] else: return [_build_dtypes(i, dtype) for i in input_size] if not isinstance(dtypes, (list, tuple)): dtypes = _build_dtypes(input_size, dtypes) batch_size = 1 summary_str = '' depth = len(list(model.sublayers())) def _get_shape_from_tensor(x): if isinstance(x, (paddle.fluid.Variable, paddle.fluid.core.VarBase)): return list(x.shape) elif isinstance(x, (list, tuple)): return [_get_shape_from_tensor(xx) for xx in x] def _get_output_shape(output): if isinstance(output, (list, tuple)): output_shape = [_get_output_shape(o) for o in output] else: output_shape = list(output.shape) return output_shape def register_hook(layer): def hook(layer, input, output): class_name = str(layer.__class__).split(".")[-1].split("'")[0] try: layer_idx = int(layer._full_name.split('_')[-1]) except: layer_idx = len(summary) m_key = "%s-%i" % (class_name, layer_idx + 1) summary[m_key] = OrderedDict() try: summary[m_key]["input_shape"] = _get_shape_from_tensor(input) except: warnings.warn('Get layer {} input shape failed!') summary[m_key]["input_shape"] = [] try: summary[m_key]["output_shape"] = _get_output_shape(output) except: warnings.warn('Get layer {} output shape failed!') summary[m_key]["output_shape"] params = 0 if paddle.in_dynamic_mode(): layer_state_dict = layer._parameters else: layer_state_dict = layer.state_dict() for k, v in layer_state_dict.items(): params += np.prod(v.shape) try: if (getattr(getattr(layer, k), 'trainable')) and ( not getattr(getattr(layer, k), 'stop_gradient')): summary[m_key]["trainable"] = True else: summary[m_key]["trainable"] = False except: summary[m_key]["trainable"] = True summary[m_key]["nb_params"] = params if (not isinstance(layer, nn.Sequential) and not isinstance(layer, nn.LayerList) and (not (layer == model) or depth < 1)): hooks.append(layer.register_forward_post_hook(hook)) if isinstance(input_size, tuple): input_size = [input_size] def build_input(input_size, dtypes): if isinstance(input_size, (list, tuple)) and _all_is_numper(input_size): if isinstance(dtypes, (list, tuple)): dtype = dtypes[0] else: dtype = dtypes return paddle.cast(paddle.rand(list(input_size)), dtype) else: return [ build_input(i, dtype) for i, dtype in zip(input_size, dtypes) ] x = build_input(input_size, dtypes) # create properties summary = OrderedDict() hooks = [] # register hook model.apply(register_hook) # make a forward pass model(*x) # remove these hooks for h in hooks: h.remove() def _get_str_length(summary): head_length = { 'layer_width': 15, 'input_shape_width': 20, 'output_shape_width': 20, 'params_width': 15, 'table_width': 75 } for layer in summary: if head_length['output_shape_width'] < len( str(summary[layer]["output_shape"])): head_length['output_shape_width'] = len( str(summary[layer]["output_shape"])) if head_length['input_shape_width'] < len( str(summary[layer]["input_shape"])): head_length['input_shape_width'] = len( str(summary[layer]["input_shape"])) if head_length['layer_width'] < len(str(layer)): head_length['layer_width'] = len(str(layer)) if head_length['params_width'] < len( str(summary[layer]["nb_params"])): head_length['params_width'] = len( str(summary[layer]["nb_params"])) _temp_width = 0 for k, v in head_length.items(): if k != 'table_width': _temp_width += v if head_length['table_width'] < _temp_width + 5: head_length['table_width'] = _temp_width + 5 return head_length table_width = _get_str_length(summary) summary_str += "-" * table_width['table_width'] + "\n" line_new = "{:^{}} {:^{}} {:^{}} {:^{}}".format( "Layer (type)", table_width['layer_width'], "Input Shape", table_width['input_shape_width'], "Output Shape", table_width['output_shape_width'], "Param #", table_width['params_width']) summary_str += line_new + "\n" summary_str += "=" * table_width['table_width'] + "\n" total_params = 0 total_output = 0 trainable_params = 0 max_length = 0 for layer in summary: # input_shape, output_shape, trainable, nb_params line_new = "{:^{}} {:^{}} {:^{}} {:^{}}".format( layer, table_width['layer_width'], str(summary[layer]["input_shape"]), table_width['input_shape_width'], str(summary[layer]["output_shape"]), table_width['output_shape_width'], "{0:,}".format(summary[layer]["nb_params"]), table_width['params_width']) total_params += summary[layer]["nb_params"] try: total_output += np.prod(summary[layer]["output_shape"]) except: for output_shape in summary[layer]["output_shape"]: total_output += np.prod(output_shape) if "trainable" in summary[layer]: if summary[layer]["trainable"] == True: trainable_params += summary[layer]["nb_params"] summary_str += line_new + "\n" def _get_input_size(input_size, size): if isinstance(input_size, (list, tuple)) and _all_is_numper(input_size): size = abs(np.prod(input_size) * 4. / (1024**2.)) else: size = sum([_get_input_size(i, size) for i in input_size]) return size total_input_size = _get_input_size(input_size, 0) total_output_size = abs(2. * total_output * 4. / (1024**2.)) # x2 for gradients total_params_size = abs(total_params * 4. / (1024**2.)) total_size = total_params_size + total_output_size + total_input_size summary_str += "=" * table_width['table_width'] + "\n" summary_str += "Total params: {0:,}".format(total_params) + "\n" summary_str += "Trainable params: {0:,}".format(trainable_params) + "\n" summary_str += "Non-trainable params: {0:,}".format(total_params - trainable_params) + "\n" summary_str += "-" * table_width['table_width'] + "\n" summary_str += "Input size (MB): %0.2f" % total_input_size + "\n" summary_str += "Forward/backward pass size (MB): %0.2f" % total_output_size + "\n" summary_str += "Params size (MB): %0.2f" % total_params_size + "\n" summary_str += "Estimated Total Size (MB): %0.2f" % total_size + "\n" summary_str += "-" * table_width['table_width'] + "\n" # return summary return summary_str, { 'total_params': total_params, 'trainable_params': trainable_params }