/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "Layer.h" #include "MKLDNNBase.h" #include "mkldnn.hpp" DECLARE_bool(use_mkldnn); DECLARE_bool(use_mkldnn_wgt); namespace paddle { class MKLDNNLayer; typedef std::shared_ptr MKLDNNLayerPtr; /** * @brief Base class of MKLDNNlayer. * */ class MKLDNNLayer : public Layer { protected: // batch size int bs_; // input image channel, height and width int ic_, ih_, iw_; // output image channel, height and width int oc_, oh_, ow_; // backward also need reset after reset forward handle bool needResetBwd_; // mkldnn engine, stream and primivtives mkldnn::engine engine_; std::shared_ptr stream_; std::shared_ptr fwd_; std::shared_ptr bwdWgt_; std::shared_ptr bwdData_; std::vector pipelineFwd_; std::vector pipelineBwd_; // TODO(TJ): change below memory as MKLDNNMatrixPtr type std::shared_ptr inVal_; std::shared_ptr inGrad_; std::shared_ptr outVal_; std::shared_ptr outGrad_; std::shared_ptr wgtVal_; std::shared_ptr wgtGrad_; std::shared_ptr biasVal_; std::shared_ptr biasGrad_; public: explicit MKLDNNLayer(const LayerConfig& config) : Layer(config), bs_(0), ic_(0), ih_(0), iw_(0), oc_(0), oh_(0), ow_(0), needResetBwd_(true), engine_(mkldnn::engine::cpu, 0), stream_(nullptr), fwd_(nullptr), bwdWgt_(nullptr), bwdData_(nullptr) {} ~MKLDNNLayer() {} virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!Layer::init(layerMap, parameterMap)) { return false; } CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." << "Please set WITH_MKLDNN=ON " << "and set use_mkldnn=True"; stream_.reset(new MKLDNNStream()); engine_ = CPUEngine::Instance().getEngine(); // TODO(TJ): deivecId return true; } /** * convert weight from paddle format to mkldnn format * weight_ will be override */ virtual void convertWeightsFromPaddle() {} /** * convert mkldnn weight to paddle format * weight_ will be override */ virtual void convertWeightsToPaddle() {} /** * print info about sizes */ virtual void printSizeInfo() { VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_ << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_ << ", oh: " << oh_ << ", ow: " << ow_; } // TODO(TJ): move to MkldnnMatrix // create memory desc inline mkldnn::memory::desc createMD( mkldnn::memory::dims dims, mkldnn::memory::format fmt, mkldnn::memory::data_type type = mkldnn::memory::data_type::f32) { // TODO(TJ): isFmtSuppoted(fmt) return mkldnn::memory::desc(dims, type, fmt); } }; } // namespace paddle