/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/operators/lite/lite_engine_op.h" #include "paddle/fluid/operators/lite/ut_helper.h" USE_NO_KERNEL_OP(lite_engine) using paddle::inference::lite::AddTensorToBlockDesc; using paddle::inference::lite::CreateTensor; using paddle::inference::lite::serialize_params; namespace paddle { namespace operators { TEST(LiteEngineOp, engine_op) { framework::ProgramDesc program; auto* block_ = program.Proto()->mutable_blocks(0); framework::BlockDesc block_desc(&program, block_); auto* feed0 = block_desc.AppendOp(); feed0->SetType("feed"); feed0->SetInput("X", {"feed"}); feed0->SetOutput("Out", {"x"}); feed0->SetAttr("col", 0); auto* feed1 = block_desc.AppendOp(); feed1->SetType("feed"); feed1->SetInput("X", {"feed"}); feed1->SetOutput("Out", {"y"}); feed1->SetAttr("col", 1); LOG(INFO) << "create elementwise_add op"; auto* elt_add = block_desc.AppendOp(); elt_add->SetType("elementwise_add"); elt_add->SetInput("X", std::vector({"x"})); elt_add->SetInput("Y", std::vector({"y"})); elt_add->SetOutput("Out", std::vector({"z"})); elt_add->SetAttr("axis", -1); LOG(INFO) << "create fetch op"; auto* fetch = block_desc.AppendOp(); fetch->SetType("fetch"); fetch->SetInput("X", std::vector({"z"})); fetch->SetOutput("Out", std::vector({"out"})); fetch->SetAttr("col", 0); // Set inputs' variable shape in BlockDesc AddTensorToBlockDesc(block_, "x", std::vector({2, 4}), true); AddTensorToBlockDesc(block_, "y", std::vector({2, 4}), true); AddTensorToBlockDesc(block_, "z", std::vector({2, 4}), false); AddTensorToBlockDesc(block_, "out", std::vector({2, 4}), false); *block_->add_ops() = *feed1->Proto(); *block_->add_ops() = *feed0->Proto(); *block_->add_ops() = *elt_add->Proto(); *block_->add_ops() = *fetch->Proto(); framework::Scope scope; #ifdef PADDLE_WITH_CUDA platform::CUDAPlace place; platform::CUDADeviceContext ctx(place); #else platform::CPUPlace place; platform::CPUDeviceContext ctx(place); #endif // Prepare variables. CreateTensor(&scope, "x", std::vector({2, 4}), false); CreateTensor(&scope, "y", std::vector({2, 4}), false); CreateTensor(&scope, "out", std::vector({2, 4}), false); ASSERT_EQ(block_->ops_size(), 4); std::vector repetitive_params{"x", "y"}; inference::lite::EngineConfig config; config.valid_places = { #ifdef PADDLE_WITH_CUDA paddle::lite::Place({TARGET(kCUDA), PRECISION(kFloat)}), #endif paddle::lite::Place({TARGET(kHost), PRECISION(kAny)}), paddle::lite::Place({TARGET(kX86), PRECISION(kFloat)}), }; serialize_params(&(config.param), &scope, repetitive_params); config.model = program.Proto()->SerializeAsString(); LOG(INFO) << "create lite_engine desc"; framework::OpDesc engine_op_desc(nullptr); engine_op_desc.SetType("lite_engine"); engine_op_desc.SetInput("Xs", std::vector({"x", "y"})); engine_op_desc.SetOutput("Ys", std::vector({"out"})); std::string engine_key = "engine_0"; engine_op_desc.SetAttr("engine_key", engine_key); engine_op_desc.SetAttr("enable_int8", false); engine_op_desc.SetAttr("use_gpu", true); engine_op_desc.SetAttr("zero_copy", true); engine_op_desc.SetBlockAttr("sub_block", &block_desc); inference::Singleton::Global().Create( engine_key, config); LOG(INFO) << "create engine op"; auto engine_op = framework::OpRegistry::CreateOp(engine_op_desc); LOG(INFO) << "engine_op " << engine_op.get(); // Execute them. LOG(INFO) << "engine_op run"; engine_op->Run(scope, place); LOG(INFO) << "done"; } } // namespace operators } // namespace paddle