// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "test_suite.h" // NOLINT DEFINE_string(modeldir, "", "Directory of the inference model."); namespace paddle_infer { paddle::test::Record PrepareInput(int batch_size) { // init input data int channel = 3; int width = 224; int height = 224; paddle::test::Record image_Record; int input_num = batch_size * channel * width * height; std::vector input_data(input_num, 1); image_Record.data = input_data; image_Record.shape = std::vector{batch_size, channel, width, height}; image_Record.type = paddle::PaddleDType::FLOAT32; return image_Record; } TEST(test_resnet50, analysis_gpu_bz1) { // init input data std::map my_input_data_map; my_input_data_map["inputs"] = PrepareInput(1); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results paddle_infer::services::PredictorPool pred_pool(config, 1); SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, &infer_output_data); // check outputs CompareRecord(&truth_output_data, &infer_output_data); std::cout << "finish test" << std::endl; } TEST(test_resnet50, trt_fp32_bz2) { // init input data std::map my_input_data_map; my_input_data_map["inputs"] = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.EnableUseGpu(100, 0); config.EnableTensorRtEngine( 1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results paddle_infer::services::PredictorPool pred_pool(config, 1); SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, &infer_output_data); // check outputs CompareRecord(&truth_output_data, &infer_output_data); std::cout << "finish test" << std::endl; } TEST(test_resnet50, serial_diff_batch_trt_fp32) { int max_batch_size = 5; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config_no_ir.SwitchIrOptim(false); paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); // prepare inference config config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.EnableUseGpu(100, 0); config.EnableTensorRtEngine(1 << 20, max_batch_size, 3, paddle_infer::PrecisionType::kFloat32, false, false); paddle_infer::services::PredictorPool pred_pool(config, 1); for (int i = 1; i < max_batch_size; i++) { // init input data std::map my_input_data_map; my_input_data_map["inputs"] = PrepareInput(i); // init output data std::map infer_output_data, truth_output_data; // get groudtruth by disbale ir SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, &infer_output_data); // check outputs CompareRecord(&truth_output_data, &infer_output_data); } std::cout << "finish test" << std::endl; } TEST(test_resnet50, multi_thread4_trt_fp32_bz2) { int thread_num = 4; // init input data std::map my_input_data_map; my_input_data_map["inputs"] = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.EnableUseGpu(100, 0); config.EnableTensorRtEngine( 1 << 20, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction(pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results from multi threads std::vector threads; services::PredictorPool pred_pool(config, thread_num); for (int i = 0; i < thread_num; ++i) { threads.emplace_back(paddle::test::SingleThreadPrediction, pred_pool.Retrive(i), &my_input_data_map, &infer_output_data, 2); } // thread join & check outputs for (int i = 0; i < thread_num; ++i) { LOG(INFO) << "join tid : " << i; threads[i].join(); CompareRecord(&truth_output_data, &infer_output_data); } std::cout << "finish multi-thread test" << std::endl; } } // namespace paddle_infer int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ::google::ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); }