/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/operators/detail/sendrecvop_utils.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/string/printf.h" namespace framework = paddle::framework; namespace platform = paddle::platform; namespace operators = paddle::operators; namespace math = paddle::operators::math; namespace memory = paddle::memory; void RunSerdeTestTensor(platform::Place place) { // serialize var to ByteBuffer framework::Variable var; auto* tensor = var.GetMutable(); tensor->Resize(framework::make_ddim({4, 8, 4, 2})); framework::LoD lod; lod.push_back(framework::Vector({1, 3, 8})); tensor->set_lod(lod); int tensor_numel = 4 * 8 * 4 * 2; platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); float* orig_tensor_data = tensor->mutable_data(place); math::set_constant(ctx, tensor, 31.9); ::grpc::ByteBuffer msg; operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg); EXPECT_GT(msg.Length(), 0); // deserialize std::vector<::grpc::Slice> slices; (void)msg.Dump(&slices); std::string tmp; for (const auto& s : slices) { tmp.append(reinterpret_cast(s.begin()), s.size()); } sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); EXPECT_EQ(varmsg.varname(), "myvar"); EXPECT_EQ(varmsg.type(), 0); EXPECT_EQ(varmsg.dims()[0], 4); EXPECT_EQ(varmsg.dims()[1], 8); EXPECT_EQ(varmsg.dims()[2], 4); EXPECT_EQ(varmsg.dims()[3], 2); EXPECT_EQ(varmsg.lod_level(), 1); EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); for (int i = 0; i < varmsg.serialized().size(); ++i) { printf("%02X ", varmsg.serialized().data()[i]); } printf("\n"); for (int i = 0; i < tensor_numel; ++i) { std::cout << "#####tensor data: " << tensor_data[i] << std::endl; EXPECT_EQ(tensor_data[i], orig_tensor_data[i]); std::cout << "test end 1 " << std::endl; } std::cout << "tensor data end " << std::endl; // deserialize zero-copy framework::Variable var2; operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); auto tensor2 = var2.Get(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; framework::TensorCopy(tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { tensor_data2 = const_cast(tensor2.data()); } EXPECT_EQ(varmsg.lod_level(), 1); EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); for (int i = 0; i < tensor_numel; ++i) EXPECT_EQ(tensor_data2[i], orig_tensor_data[i]); } void RunSerdeTestSelectedRows(platform::Place place) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); // serialize var to ByteBuffer framework::Variable var; auto* slr = var.GetMutable(); auto* tensor = slr->mutable_value(); auto* rows = slr->mutable_rows(); tensor->Resize(framework::make_ddim({2, 10})); int tensor_numel = 2 * 10; float* orig_tensor_data = tensor->mutable_data(place); math::set_constant(ctx, tensor, 32.7); rows->push_back(3); rows->push_back(10); ::grpc::ByteBuffer msg; operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg); EXPECT_GT(msg.Length(), 0); // deserialize std::vector<::grpc::Slice> slices; (void)msg.Dump(&slices); std::string tmp; for (const auto& s : slices) { tmp.append(reinterpret_cast(s.begin()), s.size()); } sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); EXPECT_EQ(varmsg.varname(), "myvar"); EXPECT_EQ(varmsg.type(), 1); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); const int64_t* rows_data = reinterpret_cast(varmsg.rows().data()); for (int i = 0; i < tensor_numel; ++i) { EXPECT_EQ(tensor_data[i], orig_tensor_data[i]); } EXPECT_EQ(rows_data[0], 3); EXPECT_EQ(rows_data[1], 10); // deserialize zero-copy framework::Variable var2; operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); auto* slr2 = var2.GetMutable(); auto* tensor2 = slr2->mutable_value(); auto* rows2 = slr2->mutable_rows(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; framework::TensorCopy(*tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { tensor_data2 = const_cast(tensor2->data()); } const int64_t* rows_data2 = rows2->data(); for (int i = 0; i < tensor_numel; ++i) { EXPECT_EQ(tensor_data2[i], orig_tensor_data[i]); } EXPECT_EQ(rows_data2[0], 3); EXPECT_EQ(rows_data2[1], 10); } // TEST(SelectedRows, CPU) { // platform::CPUPlace place; // RunSerdeTestSelectedRows(place); // } // TEST(SelectedRows, GPU) { // platform::CUDAPlace place; // RunSerdeTestSelectedRows(place); // } TEST(Tensor, CPU) { platform::CPUPlace place; RunSerdeTestTensor(place); } TEST(Tensor, GPU) { platform::CUDAPlace place; RunSerdeTestTensor(place); }