// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/dlpack_tensor.h" namespace paddle { namespace framework { namespace internal { template static ::DLDataType GetDLDataTypeCode() { ::DLDataType dtype; if (std::is_same::value || std::is_floating_point::value) { dtype.code = kDLFloat; } else if (std::is_unsigned::value) { dtype.code = kDLUInt; } else if (std::is_integral::value) { dtype.code = kDLInt; } else { PADDLE_THROW("Unsupported data type %s", typeid(T).name()); } dtype.bits = 8 * sizeof(T); dtype.lanes = 1; return dtype; } static std::unordered_map CreateDLDataTypeMap() { static std::unordered_map result; #define REG_DL_DATA_TYPE(cpp_type, proto_type) \ result[static_cast(proto_type)] = GetDLDataTypeCode() _ForEachDataType_(REG_DL_DATA_TYPE); #undef REG_DL_DATA_TYPE return result; } static DLDataType GetDLDataTypeFromTypeIndex(proto::VarType::Type type) { static auto type_to_dtype_map = CreateDLDataTypeMap(); static auto type_to_dtype_map_end_it = type_to_dtype_map.end(); auto it = type_to_dtype_map.find(static_cast(type)); PADDLE_ENFORCE(it != type_to_dtype_map_end_it, "Unsupported data type %d", type); return it->second; #undef REG_DL_DATA_TYPE } struct DLContextVisitor : public boost::static_visitor<::DLContext> { inline ::DLContext operator()(const platform::CPUPlace &place) const { ::DLContext ctx; ctx.device_type = kDLCPU; ctx.device_id = 0; return ctx; } inline ::DLContext operator()(const platform::CUDAPlace &place) const { #ifdef PADDLE_WITH_CUDA ::DLContext ctx; ctx.device_type = kDLGPU; ctx.device_id = place.device; return ctx; #else PADDLE_THROW("platform::CUDAPlace is not supported in CPU only version"); #endif } inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const { #ifdef PADDLE_WITH_CUDA ::DLContext ctx; ctx.device_type = kDLCPUPinned; ctx.device_id = 0; return ctx; #else PADDLE_THROW( "platform::CUDAPinnedPlace is not supported in CPU only version"); #endif } }; } // namespace internal DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) { // init data, data buffer t_.data = const_cast(tensor.data()); // init ctx, DLContext type with device_type and device_id auto place = tensor.place(); t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place); // init dtype t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type()); t_.dtype.lanes = lanes; // init ndim, tensor rank auto &dims = tensor.dims(); using DimType = decltype(t_.ndim); // int t_.ndim = static_cast(dims.size()); // init shape, tensor dims t_.shape = shape_; for (DimType i = 0; i < t_.ndim; ++i) { t_.shape[i] = dims[i]; } // init strides, nullptr means the tensor is compact t_.strides = nullptr; // init byte_offset t_.byte_offset = 0; } ::DLManagedTensor *DLPackTensor::ToCudfCompatibleDLManagedTensor() { // init shape, tensor dims // for DLManagedTensor shape need to be compatible with ndim // refer to cupy and cudf, we new int64[ndim] auto shape = new int64_t[t_.ndim]; using DimType = decltype(t_.ndim); // int for (DimType i = 0; i < t_.ndim; ++i) { shape[i] = t_.shape[i]; } t_.shape = shape; // init strides, nullptr means the tensor is compact // refer to cupy and cudf, the compact tensor first dim's strides need to be 1 // and second dim's strides need to be length of rows of cudf // cudf now only support dim=2 PADDLE_ENFORCE_LE(t_.ndim, 2, "cudf now only support dim=2."); if (t_.ndim > 1) t_.strides = new int64_t[2]{1, t_.shape[1]}; else t_.strides = new int64_t[1]{1}; auto tensor = new DLManagedTensor; tensor->dl_tensor = t_; tensor->deleter = [](DLManagedTensor *arg) { delete[] arg->dl_tensor.shape; delete[] arg->dl_tensor.strides; delete arg; }; tensor->manager_ctx = nullptr; return tensor; } } // namespace framework } // namespace paddle