/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/strided_memcpy.h" namespace paddle { namespace operators { template class ConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); framework::Tensor* out = ctx.Output("Out"); int64_t axis = static_cast(ctx.Attr("axis")); auto place = ctx.GetPlace(); out->mutable_data(place); // Sometimes direct copies will be faster, this maybe need deeply analysis. if (axis == 0 && ins.size() < 10) { size_t output_offset = 0; for (auto* in : ins) { auto in_stride = framework::stride_numel(in->dims()); auto out_stride = framework::stride_numel(out->dims()); StridedNumelCopyWithAxis(ctx.device_context(), axis, out->data() + output_offset, out_stride, in->data(), in_stride, in_stride[axis]); output_offset += in_stride[axis]; } } else { std::vector inputs(ins.size()); for (size_t j = 0; j < ins.size(); ++j) { inputs[j] = *ins[j]; } auto& dev_ctx = ctx.template device_context(); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(dev_ctx, inputs, static_cast(axis), out); } } }; template class ConcatGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto ins = ctx.MultiInput("X"); auto out_var_names = ctx.Outputs(framework::GradVarName("X")); auto outs = ctx.MultiOutput(framework::GradVarName("X")); { auto dx = outs; auto x = ins; for (size_t i = 0; i < dx.size(); ++i) { if (dx[i] != nullptr) { dx[i]->set_lod(x[i]->lod()); } } } int64_t axis = static_cast(ctx.Attr("axis")); // get output tensor that the name is not kEmptyVarName std::vector outputs; for (size_t j = 0; j < outs.size(); ++j) { if (out_var_names[j] != framework::kEmptyVarName) { outs[j]->mutable_data(ctx.GetPlace()); outputs.push_back(outs[j]); } else { outputs.push_back(nullptr); } } // Sometimes direct copies will be faster, this maybe need deeply analysis. if (axis == 0 && outs.size() < 10) { size_t input_offset = 0; const auto in_stride = framework::stride_numel(out_grad->dims()); for (size_t i = 0; i < outs.size(); ++i) { auto out_stride = framework::stride_numel(ins[i]->dims()); auto* out = outputs[i]; if (out != nullptr) { StridedNumelCopyWithAxis( ctx.device_context(), axis, out->data(), out_stride, out_grad->data() + input_offset, in_stride, out_stride[axis]); } input_offset += out_stride[axis]; } } else { auto& dev_ctx = ctx.template device_context(); paddle::operators::math::ConcatGradFunctor concat_grad_functor; concat_grad_functor(dev_ctx, *out_grad, ins, static_cast(axis), &outputs); } } }; } // namespace operators } // namespace paddle