# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import argparse class API: prefix_tensor_name = 'dense_' def __init__(self, api_item_yaml): self.api = api_item_yaml['api'] # args: # inputs: # names : [], list of input names # attrs: # names : [], list of attribute names # attr_info : { attr_name : (type, default_values)} self.args = self.parse_args(api_item_yaml['args']) self.output = api_item_yaml['output'] self.is_base_api = True if 'invoke' in api_item_yaml: self.is_base_api = False self.invoke = api_item_yaml['invoke'] else: self.kernel = api_item_yaml['kernel'] if 'backend' not in self.kernel or len(self.kernel['backend']) == 0: self.kernel['backend'] = None if 'layout' not in self.kernel or len(self.kernel['layout']) == 0: self.kernel['layout'] = None if 'data_type' not in self.kernel or len(self.kernel[ 'data_type']) == 0: self.kernel['data_type'] = None if 'param' not in self.kernel: self.kernel['param'] = None self.infer_meta = api_item_yaml['infer_meta'] if 'param' not in self.infer_meta: self.infer_meta['param'] = None def parse_args(self, args_str): inputs = {'names': []} attrs = {'names': [], 'attr_info': {}} args_str = args_str.strip() assert args_str.startswith('(') and args_str.endswith(')'), \ f"Args declaration should start with '(' and end with ')', please check the args of {self.api} in api.yaml." args_str = args_str[1:-1] args_list = args_str.split(',') input_types = ['const Tensor&', 'const Tensor &'] attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \ 'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \ 'const std::vector&', 'Backend', 'DataLayout', 'DataType'] args_declare_str = "" args_define_str = "" for item in args_list: item = item.strip() # match the input tensor has_input = False for in_type in input_types: if item.startswith(in_type): input_name = item[len(in_type):].strip() assert len(input_name) > 0, \ f"The input tensor name should not be empty. Please check the args of {self.api} in api.yaml." inputs['names'].append(input_name) args_declare_str = args_declare_str + in_type + ' ' + input_name + ', ' args_define_str = args_define_str + in_type + ' ' + input_name + ', ' has_input = True break if has_input: continue # match the attribute for attr_type in attr_types: if item.startswith(attr_type): attr_name = item[len(attr_type):].strip() assert len(attr_name) > 0, \ f"The attribute name should not be empty. Please check the args of {self.api} in api.yaml." default_value = None if '=' in attr_name: attr_infos = attr_name.split('=') attr_name = attr_infos[0].strip() default_value = attr_infos[1].strip() default_value_str = "" if default_value is None else '=' + default_value args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', ' args_define_str = args_define_str + attr_type + ' ' + attr_name + ', ' attrs['names'].append(attr_name) attrs['attr_info'][attr_name] = (attr_type, default_value) break args = { 'inputs': inputs, 'attrs': attrs, 'args_declare': args_declare_str[:-2], 'args_define': args_define_str[:-2] } return args def gene_api_declaration(self): return f""" PADDLE_API {self.output} {self.api}({self.args['args_declare']}); """ def gene_kernel_select(self, input_names, attrs, kernel): kernel_key_item_init = """ Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; """ # Check the tensor options attr_backend_count = 0 attr_layout_count = 0 attr_data_type_count = 0 for attr_name in attrs['names']: if attrs['attr_info'][attr_name][0] == 'Backend': assert kernel['backend'] is not None, \ f"{self.api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." attr_backend_count = attr_backend_count + 1 if attrs['attr_info'][attr_name][0] == 'DataLayout': assert kernel['layout'] is not None, \ f"{self.api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." attr_layout_count = attr_layout_count + 1 if attrs['attr_info'][attr_name][0] == 'DataType': assert kernel['data_type'] is not None, \ f"{self.api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." attr_data_type_count = attr_data_type_count + 1 # preprocess kernel configures kernel_select_code = "" if kernel['backend'] is not None: if '>' in kernel['backend']: vars_list = kernel['backend'].split('>') assert len( vars_list ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \ f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type." kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: args_str = "" for ele in kernel['backend'].split(','): args_str = args_str + ele.strip() + ', ' kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackend({args_str[:-2]}); """ if kernel['layout'] is not None: if '>' in kernel['layout']: vars_list = kernel['layout'].split('>') assert len( vars_list ) == 2, f"{self.api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \ f"{self.api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['layout'].split(',') assert len( vars_list ) == 1, f"{self.api} api: The number of params to set layout must be 1, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayout({vars_list[0].strip()}); """ if kernel['data_type'] is not None: if '>' in kernel['data_type']: vars_list = kernel['data_type'].split('>') assert len( vars_list ) == 2, f"{self.api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \ f"{self.api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['data_type'].split(',') assert len( vars_list ) == 1, f"{self.api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataType({vars_list[0].strip()}); """ if len(input_names) == 0: assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \ f"{self.api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'." kernel_select_args = "" for input_name in input_names: kernel_select_args = kernel_select_args + input_name + ", " if len(kernel_select_args) > 2: kernel_select_args = kernel_select_args[:-2] kernel_select_code = kernel_key_item_init + kernel_select_code if len(input_names) > 0: kernel_select_code = kernel_select_code + f""" if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED ) {{ auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) {{ kernel_backend = kernel_key.backend(); }} if (kernel_layout == DataLayout::UNDEFINED) {{ kernel_layout = kernel_key.layout(); }} if (kernel_data_type == DataType::UNDEFINED) {{ kernel_data_type = kernel_key.dtype(); }} }}""" kernel_select_code = kernel_select_code + f""" auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; VLOG(6) << "{self.api} API kernel: " << kernel;""" return kernel_select_code def gene_infer_meta(self, input_names, attr_names, infer_meta) -> str: infer_meta_params = infer_meta['param'] if infer_meta[ 'param'] is not None else input_names + attr_names param_code = "" for param in infer_meta_params: if param in input_names: param_code = param_code + self.prefix_tensor_name + param + "->meta(), " elif param in attr_names: param_code = param_code + param + ", " elif isinstance(param, str): param_code = param_code + "\"" + param + "\", " elif isinstance(param, bool): param_code = param_code + str(param).lower() + ", " else: param_code = param_code + str(param) + ", " param_code = param_code[:-2] return f""" auto out_meta = pten::{infer_meta['func']}({param_code}); """ def get_kernel_args(self, input_names, attrs, kernel_param): input_tensor_code = "" for input_name in input_names: # set input code input_tensor_code = input_tensor_code + f""" auto {self.prefix_tensor_name}{input_name} = std::dynamic_pointer_cast({input_name}.impl());""" attr_names = attrs['names'] if kernel_param is None: kernel_param = input_names + attr_names kernel_args = "*dev_ctx, " for param in kernel_param: if param in input_names: kernel_args = kernel_args + "*" + self.prefix_tensor_name + param + ", " elif param in attr_names: # set attr for kernel_context if 'ScalarArray' in attrs['attr_info'][param][0]: param = 'pten::ScalarArray(' + param + ')' elif 'Scalar' in attrs['attr_info'][param][0]: param = 'pten::Scalar(' + param + ')' kernel_args = kernel_args + param + ", " elif isinstance(param, bool): kernel_args = kernel_args + str(param).lower() + ", " else: kernel_args = kernel_args + str(param) + ", " return input_tensor_code, kernel_args[:-2] def gene_api_code(self): if self.is_base_api: input_tensors, kernel_args = self.get_kernel_args( self.args['inputs']['names'], self.args['attrs'], self.kernel['param']) return f""" PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{ {self.gene_kernel_select(self.args['inputs']['names'], self.args['attrs'], self.kernel)} auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); {input_tensors} {self.gene_infer_meta(self.args['inputs']['names'], self.args['attrs']['names'], self.infer_meta)} auto dense_out = std::make_shared( pten::make_intrusive( pten::TransToFluidPlace(kernel_backend)), std::move(out_meta)); Tensor out; out.set_impl(dense_out); auto* kernel_fn = kernel.GetVariadicKernelFn(); (*kernel_fn)({kernel_args}, dense_out.get()); return out; }} """ else: return f""" PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{ return {self.invoke}; }} """ def header_include(): return """ #include "paddle/pten/api/include/tensor.h" #include "paddle/pten/common/scalar.h" #include "paddle/pten/common/scalar_array.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include #include "glog/logging.h" #include "paddle/pten/api/include/kernel_signature.h" #include "paddle/pten/api/lib/api_registry.h" #include "paddle/pten/api/lib/kernel_declare.h" #include "paddle/pten/api/lib/kernel_dispatch.h" #include "paddle/pten/api/lib/utils/storage.h" #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/include/core.h" #include "paddle/pten/include/infermeta.h" #include "paddle/pten/kernels/declarations.h" """ def api_register(): return """ PT_REGISTER_API(Creation); PT_REGISTER_API(Linalg); PT_REGISTER_API(Manipulation); PT_REGISTER_API(Math); """ def api_namespace(): return (""" namespace paddle { namespace experimental { """, """ } // namespace experimental } // namespace paddle """) def generate_api(api_yaml_path, header_file_path, source_file_path): with open(api_yaml_path, 'r') as f: apis = yaml.load(f, Loader=yaml.FullLoader) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/pten/api/include/api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for api in apis: api_code = API(api) print(api_code.gene_api_declaration()) header_file.write(api_code.gene_api_declaration()) source_file.write(api_code.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) source_file.write(api_register()) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ API files') parser.add_argument( '--api_yaml_path', help='path to yaml file directory', default='python/paddle/utils/code_gen/api.yaml') parser.add_argument( '--api_header_path', help='output of generated api header code file', default='paddle/pten/api/include/api.h') parser.add_argument( '--api_source_path', help='output of generated api source code file', default='paddle/pten/api/lib/api.cc') options = parser.parse_args() api_yaml_path = options.api_yaml_path header_file_path = options.api_header_path source_file_path = options.api_source_path generate_api(api_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()