# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.incubate.fleet.base.role_maker as role_maker from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig class TestPyramidHashOpApi(unittest.TestCase): def test_dist_geo_server_transpiler(self): num_voc = 128 embed_dim = 64 x_shape, x_lod = [16, 10], [[3, 5, 2, 6]] x = fluid.data(name='x', shape=x_shape, dtype='int32', lod_level=1) hash_embd = fluid.contrib.layers.search_pyramid_hash( input=x, num_emb=embed_dim, space_len=num_voc * embed_dim, pyramid_layer=4, rand_len=16, drop_out_percent=0.5, is_training=True, use_filter=False, white_list_len=6400, black_list_len=2800, seed=3, lr=0.002, param_attr=fluid.ParamAttr( name="PyramidHash_emb_0", learning_rate=0, ), param_attr_wl=fluid.ParamAttr( name="Filter", learning_rate=0, ), param_attr_bl=None, distribute_update_vars=["PyramidHash_emb_0"], name=None) cost = fluid.layers.reduce_sum(hash_embd) role = role_maker.UserDefinedRoleMaker( current_id=0, role=role_maker.Role.SERVER, worker_num=2, server_endpoints=["127.0.0.1:36011", "127.0.0.1:36012"]) fleet.init(role) strategy = DistributeTranspilerConfig() strategy.sync_mode = False strategy.geo_sgd_mode = True strategy.geo_sgd_need_push_nums = 5 optimizer = fluid.optimizer.SGD(0.1) optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer.minimize(cost) pserver_startup_program = fleet.startup_program pserver_mian_program = fleet.main_program if __name__ == "__main__": unittest.main()