// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/memory/malloc.h" #include "paddle/phi/backends/dynload/cusparse.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/sparse_coo_tensor.h" #include "paddle/phi/core/sparse_csr_tensor.h" #include "paddle/phi/core/visit_type.h" namespace phi { namespace funcs { namespace sparse { template cudaDataType_t GetGpuDataType() { if (std::is_same::value) { return CUDA_R_32F; } else if (std::is_same::value) { return CUDA_R_64F; } else if (std::is_same::value) { return CUDA_R_16F; } } inline cusparseOperation_t GetTransposeOperation(const bool trans) { if (trans) { return CUSPARSE_OPERATION_TRANSPOSE; } else { return CUSPARSE_OPERATION_NON_TRANSPOSE; } } /************* SPARSE MATRIX DESCRIPTOR (COO/CSR) ************/ template inline void CreateCsrDescriptor(const phi::SparseCsrTensor& x, const phi::GPUContext& dev_ctx, cusparseSpMatDescr_t* descriptor) { std::vector xdim_vec = phi::vectorize(x.dims()); auto x_ndims = xdim_vec.size(); PADDLE_ENFORCE_GE( x_ndims, 2, phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be " "greater than or eaqual to 2.")); int64_t M = xdim_vec[x_ndims - 2]; int64_t N = xdim_vec[x_ndims - 1]; int batch_size = 1; for (int i = 0; i < x_ndims - 2; i++) { batch_size *= xdim_vec[i]; } PADDLE_ENFORCE_EQ(x.non_zero_crows().numel(), batch_size * (M + 1), phi::errors::PreconditionNotMet( "the length of SparseCsrTensor crows is not right.")); const IntT* crows_data = x.non_zero_crows().data(); const IntT* cols_data = x.non_zero_cols().data(); const T* values_data = x.non_zero_elements().data(); int64_t batch_nnz = x.nnz() / batch_size; cudaDataType_t gpu_type = GetGpuDataType(); dev_ctx.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCreateCsr(descriptor, M, N, batch_nnz, const_cast(crows_data), const_cast(cols_data), const_cast(values_data), CUSPARSE_INDEX_64I, CUSPARSE_INDEX_64I, CUSPARSE_INDEX_BASE_ZERO, gpu_type); }); if (batch_size > 1) { #if CUDA_VERSION >= 11070 dev_ctx.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCsrSetStridedBatch( *descriptor, batch_size, M + 1, batch_nnz); }); #else PADDLE_THROW(phi::errors::Unimplemented( "Batch Sparse matmul use 'cusparseCsrSetStridedBatch', which is " "supported from CUDA 11.7")); #endif } } template inline void CreateCooDescriptor(const phi::SparseCooTensor& x, const phi::GPUContext& dev_ctx, cusparseSpMatDescr_t* descriptor) { std::vector xdim_vec = phi::vectorize(x.dims()); auto x_ndims = xdim_vec.size(); PADDLE_ENFORCE_GE( x_ndims, 2, phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be " "greater than or eaqual to 2.")); int64_t M = xdim_vec[x_ndims - 2]; int64_t N = xdim_vec[x_ndims - 1]; int batch_size = 1; for (int i = 0; i < x_ndims - 2; i++) { batch_size *= xdim_vec[i]; } int64_t nnz = x.nnz(); const IntT* indices_data = x.non_zero_indices().data(); const T* values_data = x.non_zero_elements().data(); auto rows_data = indices_data + (x_ndims - 2) * nnz; auto cols_data = indices_data + (x_ndims - 1) * nnz; int64_t batch_nnz = nnz / batch_size; cudaDataType_t gpu_type = GetGpuDataType(); dev_ctx.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCreateCoo(descriptor, M, N, batch_nnz, const_cast(rows_data), const_cast(cols_data), const_cast(values_data), CUSPARSE_INDEX_64I, CUSPARSE_INDEX_BASE_ZERO, gpu_type); }); if (batch_size > 1) { #if CUDA_VERSION >= 11070 dev_ctx.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCooSetStridedBatch( *descriptor, batch_size, batch_nnz); }); #else PADDLE_THROW(phi::errors::Unimplemented( "Batch Sparse matmul use 'cusparseCooSetStridedBatch', which is " "supported from CUDA 11.7")); #endif } } template class CuSparseSpMatDescriptor { public: explicit CuSparseSpMatDescriptor(const phi::SparseCsrTensor& x, const phi::GPUContext& dev_ctx) : dev_ctx_(dev_ctx) { PD_VISIT_INTEGRAL_TYPES( x.non_zero_crows().dtype(), "Csr CuSparseSpMatDescriptor", ([&] { CreateCsrDescriptor(x, dev_ctx_, &descriptor_); })); VLOG(6) << "Create csr cusparseSpMatDescr_t " << &descriptor_; } explicit CuSparseSpMatDescriptor(const phi::SparseCooTensor& x, const phi::GPUContext& dev_ctx) : dev_ctx_(dev_ctx) { PD_VISIT_INTEGRAL_TYPES( x.non_zero_indices().dtype(), "Coo CuSparseSpMatDescriptor", ([&] { CreateCooDescriptor(x, dev_ctx_, &descriptor_); })); VLOG(6) << "Create coo cusparseSpMatDescr_t " << &descriptor_; } ~CuSparseSpMatDescriptor() { dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseDestroySpMat(descriptor_); }); VLOG(6) << "Destroy cusparseSpMatDescr_t " << &descriptor_; } const cusparseSpMatDescr_t& descriptor() const { return descriptor_; } private: const phi::GPUContext& dev_ctx_; cusparseSpMatDescr_t descriptor_; }; /************* DENSE MATRIX DESCRIPTOR ************/ template class CuSparseDnMatDescriptor { public: explicit CuSparseDnMatDescriptor(const phi::DenseTensor& x, const phi::GPUContext& dev_ctx) : dev_ctx_(dev_ctx) { std::vector xdim_vec = phi::vectorize(x.dims()); auto x_ndims = xdim_vec.size(); PADDLE_ENFORCE_GE( x_ndims, 2, phi::errors::InvalidArgument("the dim size of DenseTensor must be " "greater than or eaqual to 2.")); int64_t M = xdim_vec[x_ndims - 2]; int64_t N = xdim_vec[x_ndims - 1]; int batch_size = 1; for (int i = 0; i < x_ndims - 2; i++) { batch_size *= xdim_vec[i]; } const T* x_data = x.data(); cudaDataType_t gpu_type = GetGpuDataType(); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCreateDnMat(&descriptor_, M, N, N, const_cast(x_data), gpu_type, CUSPARSE_ORDER_ROW); }); PADDLE_ENFORCE_EQ(x.numel(), batch_size * M * N); if (batch_size > 1) { #if CUDA_VERSION >= 11070 dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseDnMatSetStridedBatch( descriptor_, batch_size, M * N); }); #else PADDLE_THROW(phi::errors::Unimplemented( "Batch Sparse matmul use 'cusparseDnMatSetStridedBatch', which is " "supported from CUDA 11.7")); #endif } VLOG(6) << "Create cusparseDnMatDescr_t " << &descriptor_; } ~CuSparseDnMatDescriptor() { dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseDestroyDnMat(descriptor_); }); VLOG(6) << "Destroy cusparseDnMatDescr_t " << &descriptor_; } const cusparseDnMatDescr_t& descriptor() const { return descriptor_; } private: const phi::GPUContext& dev_ctx_; cusparseDnMatDescr_t descriptor_; }; /************* DENSE VECTOR DESCRIPTOR ************/ template class CuSparseDnVecDescriptor { public: explicit CuSparseDnVecDescriptor(const phi::DenseTensor& x, const phi::GPUContext& dev_ctx) : dev_ctx_(dev_ctx) { std::vector xdim_vec = phi::vectorize(x.dims()); auto x_ndims = xdim_vec.size(); PADDLE_ENFORCE_GE(x_ndims, 1, phi::errors::InvalidArgument( "the dim size of Vec must be eaqual to 1.")); const T* x_data = x.data(); cudaDataType_t gpu_type = GetGpuDataType(); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseCreateDnVec( &descriptor_, x.numel(), const_cast(x_data), gpu_type); }); VLOG(6) << "Create cusparseDnVecDescr_t " << &descriptor_; } ~CuSparseDnVecDescriptor() { dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseDestroyDnVec(descriptor_); }); VLOG(6) << "Destroy cusparseDnVecDescr_t " << &descriptor_; } const cusparseDnVecDescr_t& descriptor() const { return descriptor_; } private: const phi::GPUContext& dev_ctx_; cusparseDnVecDescr_t descriptor_; }; /************* SPARSE*DENSE->DENSE MATMUL ************/ template <> template void SparseBlas::SPMM(bool transa, bool transb, T alpha, const TensorType& mat_a, const phi::DenseTensor& mat_b, T beta, phi::DenseTensor* mat_out) const { auto a_descriptor = CuSparseSpMatDescriptor(mat_a, dev_ctx_); auto b_descriptor = CuSparseDnMatDescriptor(mat_b, dev_ctx_); auto out_descriptor = CuSparseDnMatDescriptor(*mat_out, dev_ctx_); cudaDataType_t gpu_type = GetGpuDataType(); size_t buffer_size = 0; dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSpMM_bufferSize(handle, GetTransposeOperation(transa), GetTransposeOperation(transb), &alpha, a_descriptor.descriptor(), b_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_SPMM_ALG_DEFAULT, &buffer_size); }); paddle::memory::allocation::AllocationPtr tmp_buffer = paddle::memory::Alloc(dev_ctx_, buffer_size); void* tmp_buffer_ptr = tmp_buffer->ptr(); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSpMM(handle, GetTransposeOperation(transa), GetTransposeOperation(transb), &alpha, a_descriptor.descriptor(), b_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_SPMM_ALG_DEFAULT, tmp_buffer_ptr); }); } /************* SPARSE*DENSE->DENSE MV ************/ template <> template void SparseBlas::SPMV(bool transa, T alpha, const TensorType& mat_a, const phi::DenseTensor& vec_x, T beta, phi::DenseTensor* vec_out) const { auto a_descriptor = CuSparseSpMatDescriptor(mat_a, dev_ctx_); auto x_descriptor = CuSparseDnVecDescriptor(vec_x, dev_ctx_); auto out_descriptor = CuSparseDnVecDescriptor(*vec_out, dev_ctx_); cudaDataType_t gpu_type = GetGpuDataType(); size_t buffer_size = 0; dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSpMV_bufferSize(handle, GetTransposeOperation(transa), &alpha, a_descriptor.descriptor(), x_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_MV_ALG_DEFAULT, &buffer_size); }); paddle::memory::allocation::AllocationPtr tmp_buffer = paddle::memory::Alloc(dev_ctx_, buffer_size); void* tmp_buffer_ptr = tmp_buffer->ptr(); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSpMV(handle, GetTransposeOperation(transa), &alpha, a_descriptor.descriptor(), x_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_MV_ALG_DEFAULT, tmp_buffer_ptr); }); } /************* DENSE*DENSE->SPARSE MATMUL ************/ #if CUDA_VERSION >= 11030 template <> template void SparseBlas::SDDMM(bool transa, bool transb, T alpha, const phi::DenseTensor& mat_a, const phi::DenseTensor& mat_b, T beta, TensorType* mat_out) const { auto a_descriptor = CuSparseDnMatDescriptor(mat_a, dev_ctx_); auto b_descriptor = CuSparseDnMatDescriptor(mat_b, dev_ctx_); auto out_descriptor = CuSparseSpMatDescriptor(*mat_out, dev_ctx_); cudaDataType_t gpu_type = GetGpuDataType(); size_t buffer_size = 0; dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSDDMM_bufferSize(handle, GetTransposeOperation(transa), GetTransposeOperation(transb), &alpha, a_descriptor.descriptor(), b_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_SDDMM_ALG_DEFAULT, &buffer_size); }); paddle::memory::allocation::AllocationPtr tmp_buffer = paddle::memory::Alloc(dev_ctx_, buffer_size); void* tmp_buffer_ptr = tmp_buffer->ptr(); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSDDMM_preprocess(handle, GetTransposeOperation(transa), GetTransposeOperation(transb), &alpha, a_descriptor.descriptor(), b_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_SDDMM_ALG_DEFAULT, tmp_buffer_ptr); }); dev_ctx_.CusparseCall([&](cusparseHandle_t handle) { phi::dynload::cusparseSDDMM(handle, GetTransposeOperation(transa), GetTransposeOperation(transb), &alpha, a_descriptor.descriptor(), b_descriptor.descriptor(), &beta, out_descriptor.descriptor(), gpu_type, CUSPARSE_SDDMM_ALG_DEFAULT, tmp_buffer_ptr); }); } #endif } // namespace sparse } // namespace funcs } // namespace phi