/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/fused/cudnn_fusion_helper.h" #include "paddle/fluid/platform/cudnn_desc.h" #include "paddle/fluid/platform/cudnn_helper.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; namespace dynload = platform::dynload; template using ScalingParamType = typename platform::CudnnDataType::ScalingParamType; #if CUDNN_VERSION >= 8000 static size_t RoundUp(int64_t a, int64_t b) { return (a + b - 1) / b * b; } template struct NormConvolutionArgs { NormConvolutionArgs() { dtype = platform::CudnnDataType::type; format = CUDNN_TENSOR_NHWC; compute_type = platform::CudnnDataType::type; } void Set(const platform::CUDADeviceContext &ctx, const std::vector &input_shape, const std::vector &filter_shape, const std::vector &output_shape, int padding, int stride, int dilation, int group) { PADDLE_ENFORCE_EQ( input_shape.size(), 4U, platform::errors::InvalidArgument( "The size of input_shape is expected to 4. But recieved " "input_shape's size is %d, input_shape is [%s].", input_shape.size(), framework::make_ddim(input_shape))); PADDLE_ENFORCE_EQ( filter_shape.size(), 4U, platform::errors::InvalidArgument( "The size of filter_shape is expected to 4. But recieved " "filter_shape's size is %d, filter_shape is [%s].", filter_shape.size(), framework::make_ddim(filter_shape))); PADDLE_ENFORCE_EQ(filter_shape[1] == filter_shape[2] && (filter_shape[1] == 1 || filter_shape[1] == 3), true, platform::errors::InvalidArgument( "The filter_shape is expected to store as nhwc, and " "h = w = 1 or 3. But recieved filter_shape is [%s].", framework::make_ddim(filter_shape))); PADDLE_ENFORCE_EQ((filter_shape[0] % 32 == 0 && filter_shape[3] % 8 == 0), true, platform::errors::InvalidArgument( "The input channel is expected to be multiple of 8, " "and the output channel is expected to be multiple " "of 32. But recieved input channel is %d, output " "channel is %d.", filter_shape[3], filter_shape[0])); PADDLE_ENFORCE_EQ( output_shape.size(), 4U, platform::errors::InvalidArgument( "The size of output_shape is expected to 4. But recieved " "filter_shape's size is %d, filter_shape is [%s].", output_shape.size(), framework::make_ddim(output_shape))); is_support = IsSupport(ctx, filter_shape, stride, dilation, group); PADDLE_ENFORCE_EQ( is_support, true, platform::errors::InvalidArgument( "Current test is only supported in the platforms with " "compatiblity greater than or equal to 70 and the kernel size " "must be equal to 1 or 3. When the kernel size is 1, " "the stride must be 1 if the compatiblity is equal to 70. " "Besides, the dilation and group must be equal to 1. But recieved " "compatiblity is %d, kernel size is %d, stride is %d, " "dilation is %d, group is %d", ctx.GetComputeCapability(), filter_shape[1], stride, dilation, group)); for (size_t i = 0; i < input_shape.size(); ++i) { in_dims.push_back(input_shape[i]); } for (size_t i = 0; i < filter_shape.size(); ++i) { filter_dims.push_back(filter_shape[i]); } paddings = {padding, padding}; strides = {stride, stride}; dilations = {dilation, dilation}; in_desc.set(input_shape, format, dtype); filter_desc.set(filter_shape, format, dtype, group); out_desc.set(output_shape, format, dtype); int output_channel = filter_shape[0]; std::vector stats_shape = {1, 1, 1, output_channel}; out_stats_desc.set(stats_shape, format, compute_type); conv_desc.set(dtype, paddings, strides, dilations, false, group); } bool IsSupport(const platform::CUDADeviceContext &ctx, const std::vector &filter_shape, int stride, int dilation, int group) { int kernel_size = filter_shape[1]; if (dilation != 1 || group != 1) { return false; } if (ctx.GetComputeCapability() == 70) { if ((kernel_size == 3) || ((kernel_size == 1) && (stride == 1))) { return true; } } else if (ctx.GetComputeCapability() > 70) { if ((kernel_size == 3) || (kernel_size == 1)) { return true; } } return false; } cudnnDataType_t dtype; cudnnTensorFormat_t format; cudnnDataType_t compute_type; std::vector in_dims; std::vector filter_dims; std::vector strides; std::vector paddings; std::vector dilations; platform::TensorDescriptor in_desc; platform::FilterDescriptor filter_desc; platform::TensorDescriptor out_desc; platform::TensorDescriptor out_stats_desc; platform::ConvolutionDescriptor conv_desc; bool is_support; }; template class CudnnNormConvolution { public: CudnnNormConvolution(const platform::CUDADeviceContext &ctx, const std::vector &input_shape, const std::vector &filter_shape, const std::vector &output_shape, const int &padding, const int &stride, const int &dilation, const int &group) { args_.Set(ctx, input_shape, filter_shape, output_shape, padding, stride, dilation, group); } ~CudnnNormConvolution() {} void Forward(const platform::CUDADeviceContext &ctx, const Tensor &input, const Tensor &filter, Tensor *output, Tensor *sum, Tensor *sum_of_squares) { auto cudnn_handle = ctx.cudnn_handle(); auto place = ctx.GetPlace(); CudnnFusionOp *fwd_op = GetForwardOp(ctx); size_t workspace_size = RoundUp( static_cast(fwd_op->GetWorkspaceSizeInBytes(cudnn_handle)), 512); // Set variant_param // input ptr T *input_ptr = const_cast(input.data()); T *filter_ptr = const_cast(filter.data()); fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_XDATA, input_ptr); fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WDATA, filter_ptr); fwd_op->SetOpVariantParamAttrPtr( CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES, &workspace_size); // output ptr T *output_ptr = output->mutable_data(place); float *sum_ptr = sum->mutable_data(place); float *sum_of_squares_ptr = sum_of_squares->mutable_data(place); fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YDATA, output_ptr); fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YSUM, sum_ptr); fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_YSQSUM, sum_of_squares_ptr); ctx.cudnn_workspace_handle().RunFunc( [&](void *workspace_ptr) { // workspace ptr fwd_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, workspace_ptr); // fused op execute fwd_op->Execute(cudnn_handle); }, workspace_size); } private: CudnnFusionOp *GetForwardOp(const platform::CUDADeviceContext &ctx) { framework::AlgorithmsCache &cache = *(CudnnFusionOpCache::Instance().GetForward()); CudnnFusionOp *fwd_op = cache.GetAlgorithm( args_.in_dims, args_.filter_dims, args_.strides, args_.paddings, args_.dilations, 0, static_cast(args_.dtype), [&]() { CudnnFusionOp *fwd_op = new CudnnFusionOp(CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS); // Set constant_param fwd_op->SetOpConstParamAttr( {CUDNN_PARAM_XDATA_PLACEHOLDER, CUDNN_PARAM_WDATA_PLACEHOLDER, CUDNN_PARAM_YDATA_PLACEHOLDER}, CUDNN_PTR_16B_ALIGNED); fwd_op->SetOpConstParamAttr( {CUDNN_PARAM_YSUM_PLACEHOLDER, CUDNN_PARAM_YSQSUM_PLACEHOLDER}, CUDNN_PTR_16B_ALIGNED); // conv desc fwd_op->SetOpConstParamDesc(CUDNN_PARAM_CONV_DESC, args_.conv_desc.desc()); // input desc fwd_op->SetOpConstParamDesc(CUDNN_PARAM_XDESC, args_.in_desc.desc()); // filter desc fwd_op->SetOpConstParamDesc(CUDNN_PARAM_WDESC, args_.filter_desc.desc()); // output desc fwd_op->SetOpConstParamDesc(CUDNN_PARAM_YDESC, args_.out_desc.desc()); // output_stats desc fwd_op->SetOpConstParamDesc(CUDNN_PARAM_YSTATS_DESC, args_.out_stats_desc.desc()); // batch_norm mode fwd_op->SetOpConstParamAttr(CUDNN_PARAM_BN_MODE, CUDNN_BATCHNORM_SPATIAL_PERSISTENT); // Make cudnn fused ops plan fwd_op->GetWorkspaceSizeInBytes(ctx.cudnn_handle()); return fwd_op; }); return fwd_op; } private: NormConvolutionArgs args_; }; template class CudnnNormConvolutionGrad { public: CudnnNormConvolutionGrad(const platform::CUDADeviceContext &ctx, const std::vector &input_shape, const std::vector &filter_shape, const std::vector &output_shape, const int &padding, const int &stride, const int &dilation, const int &group) { args_.Set(ctx, input_shape, filter_shape, output_shape, padding, stride, dilation, group); dgrad_algo_ = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } ~CudnnNormConvolutionGrad() {} void Backward(const platform::CUDADeviceContext &ctx, const Tensor &input, const Tensor &filter, const Tensor &output_grad, Tensor *input_grad, Tensor *filter_grad, bool use_addto = false) { auto place = ctx.GetPlace(); T *input_ptr = const_cast(input.data()); T *filter_ptr = const_cast(filter.data()); T *output_grad_ptr = const_cast(output_grad.data()); if (filter_grad) { T *filter_grad_ptr = filter_grad->mutable_data(place); BackwardFilter(ctx, output_grad_ptr, input_ptr, filter_grad_ptr); } if (input_grad) { T *input_grad_ptr = input_grad->mutable_data(place); BackwardData(ctx, output_grad_ptr, filter_ptr, input_grad_ptr, use_addto); } } private: void BackwardFilter(const platform::CUDADeviceContext &ctx, T *output_grad_ptr, T *input_ptr, T *filter_grad_ptr) { auto cudnn_handle = ctx.cudnn_handle(); CudnnFusionOp *wgrad_op = GetBackwardFilterOp(ctx); size_t workspace_size = RoundUp( static_cast(wgrad_op->GetWorkspaceSizeInBytes(cudnn_handle)), 512); wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_XDATA, input_ptr); wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_DYDATA, output_grad_ptr); wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_DWDATA, filter_grad_ptr); wgrad_op->SetOpVariantParamAttrPtr( CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES, &workspace_size); ctx.cudnn_workspace_handle().RunFunc( [&](void *workspace_ptr) { // workspace ptr wgrad_op->SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, workspace_ptr); // fused op execute wgrad_op->Execute(cudnn_handle); }, workspace_size); } void BackwardData(const platform::CUDADeviceContext &ctx, T *output_grad_ptr, T *filter_ptr, T *input_grad_ptr, bool use_addto = false) { auto cudnn_handle = ctx.cudnn_handle(); size_t workspace_size = GetWorkspaceSizeBwdData(ctx); // Convolution dgrad followed optionally by batchnorm dgrad ScalingParamType alpha = 1.0f; ScalingParamType beta = use_addto ? 1.0f : 0.0f; ctx.cudnn_workspace_handle().RunFunc( [&](void *cudnn_workspace_ptr) { PADDLE_ENFORCE_CUDA_SUCCESS( platform::dynload::cudnnConvolutionBackwardData( cudnn_handle, &alpha, args_.filter_desc.desc(), filter_ptr, args_.out_desc.desc(), output_grad_ptr, args_.conv_desc.desc(), dgrad_algo_, cudnn_workspace_ptr, workspace_size, &beta, args_.in_desc.desc(), input_grad_ptr)); }, workspace_size); } CudnnFusionOp *GetBackwardFilterOp(const platform::CUDADeviceContext &ctx) { framework::AlgorithmsCache &cache = *(CudnnFusionOpCache::Instance().GetBackward()); CudnnFusionOp *wgrad_op = cache.GetAlgorithm( args_.in_dims, args_.filter_dims, args_.strides, args_.paddings, args_.dilations, 0, static_cast(args_.dtype), [&]() { CudnnFusionOp *wgrad_op = new CudnnFusionOp(CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD); wgrad_op->SetOpConstParamAttr( {CUDNN_PARAM_DYDATA_PLACEHOLDER, CUDNN_PARAM_XDATA_PLACEHOLDER, CUDNN_PARAM_DWDATA_PLACEHOLDER}, CUDNN_PTR_16B_ALIGNED); // conv desc wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_CONV_DESC, args_.conv_desc.desc()); // input desc wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_XDESC, args_.in_desc.desc()); // filter desc wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_DWDESC, args_.filter_desc.desc()); // output desc wgrad_op->SetOpConstParamDesc(CUDNN_PARAM_DYDESC, args_.out_desc.desc()); wgrad_op->SetOpConstParamAttr(CUDNN_PARAM_BN_MODE, CUDNN_BATCHNORM_SPATIAL_PERSISTENT); // Make cudnn fused ops plan wgrad_op->GetWorkspaceSizeInBytes(ctx.cudnn_handle()); return wgrad_op; }); return wgrad_op; } size_t GetWorkspaceSizeBwdData(const platform::CUDADeviceContext &ctx) { size_t workspace_size = 0U; auto handle = ctx.cudnn_handle(); PADDLE_ENFORCE_CUDA_SUCCESS( platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( handle, args_.filter_desc.desc(), args_.out_desc.desc(), args_.conv_desc.desc(), args_.in_desc.desc(), dgrad_algo_, &workspace_size)); return RoundUp(workspace_size, 512); } private: NormConvolutionArgs args_; cudnnConvolutionBwdDataAlgo_t dgrad_algo_; }; #endif } // namespace operators } // namespace paddle