// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/split_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void SplitKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& sections, const Scalar& axis_scalar, std::vector outs) { int axis = axis_scalar.to(); auto in_dims = x.dims(); auto input_shape = vectorize(in_dims); std::vector out_ptrs; std::vector split_lists; for (size_t j = 0; j < outs.size(); ++j) { dev_ctx.template Alloc(outs[j]); out_ptrs.push_back(outs[j]->data()); split_lists.push_back(outs[j]->dims()[axis]); } int r = xpu::split(dev_ctx.x_context(), x.data(), out_ptrs, input_shape, split_lists, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "split"); } template void SplitWithNumKernel(const Context& dev_ctx, const DenseTensor& x, int num, const Scalar& axis_scalar, std::vector outs) { int axis_value = axis_scalar.to(); auto input_axis_dim = x.dims().at(axis_value); std::vector sections_vec; for (int i = 0; i < num; ++i) { sections_vec.push_back(input_axis_dim / num); } IntArray sections(sections_vec); SplitKernel(dev_ctx, x, sections, axis_scalar, outs); } } // namespace phi PD_REGISTER_KERNEL(split, XPU, ALL_LAYOUT, phi::SplitKernel, float, int) {} PD_REGISTER_KERNEL( split_with_num, XPU, ALL_LAYOUT, phi::SplitWithNumKernel, float, int) {}