/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/sparse_coo_tensor.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/sparse/convolution_kernel.h" namespace phi { namespace sparse { template void Conv3dGradKernel(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& rulebook, const DenseTensor& kernel, const SparseCooTensor& out_grad, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, const bool subm, DenseTensor* x_grad, DenseTensor* kernel_grad); template std::vector Conv3dGrad(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& rulebook, const DenseTensor& kernel, const SparseCooTensor& out_grad, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, const bool subm) { DenseTensor x_grad = phi::Empty(dev_ctx, DenseTensorMeta(x.dtype(), {1}, x.layout())); DenseTensor kernel_grad = phi::Empty( dev_ctx, DenseTensorMeta(kernel.dtype(), {1}, kernel.layout())); // TODO(zhangkaihuo): call InferMeta func here Conv3dGradKernel(dev_ctx, x, rulebook, kernel, out_grad, paddings, dilations, strides, groups, subm, &x_grad, &kernel_grad); std::vector out(2); out[0] = x_grad; out[1] = kernel_grad; return out; } } // namespace sparse } // namespace phi