/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/log_loss_op.h" #include #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template void LogLossAdds(const platform::Place& place, const aclrtStream& stream, const Tensor* x, float scale, Tensor* y) { // Calculate y = x + scale y->mutable_data(x->dims(), place); const auto& runner = NpuOpRunner("Adds", {*x}, {*y}, {{"value", scale}}); runner.Run(stream); } template void LogLossMuls(const platform::Place& place, const aclrtStream& stream, const Tensor* x, float scale, Tensor* y) { // Calculate y = x + scale y->mutable_data(x->dims(), place); const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scale}}); runner.Run(stream); } template void LogLossBCE(const platform::Place& place, const aclrtStream& stream, const Tensor* x, const Tensor* y, Tensor* z) { z->mutable_data(x->dims(), place); const auto& runner = NpuOpRunner("BinaryCrossEntropy", {*x, *y}, {*z}, {{"reduction", static_cast("none")}}); runner.Run(stream); } template void LogLossBCEGrad(const platform::Place& place, const aclrtStream& stream, const Tensor* x, const Tensor* y, const Tensor* dout, Tensor* dx) { dx->mutable_data(x->dims(), place); const auto& runner = NpuOpRunner("BinaryCrossEntropyGrad", {*x, *y, *dout}, {*dx}, {{"reduction", static_cast("none")}}); runner.Run(stream); } template class LogLossNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* y = ctx.Output("Loss"); auto* pred = ctx.Input("Predicted"); auto* label = ctx.Input("Labels"); auto epsilon = static_cast(ctx.Attr("epsilon")); auto place = ctx.GetPlace(); auto stream = ctx.template device_context() .stream(); float factor = 1 / (1 + 2 * epsilon); float coef = std::log(factor); LogLossAdds(place, stream, pred, epsilon, y); LogLossMuls(place, stream, y, factor, y); LogLossBCE(place, stream, y, label, y); LogLossAdds(place, stream, y, coef, y); } }; template class LogLossGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* pred = ctx.Input("Predicted"); auto* label = ctx.Input("Labels"); auto* dloss = ctx.Input(framework::GradVarName("Loss")); auto* dpred = ctx.Output(framework::GradVarName("Predicted")); auto epsilon = static_cast(ctx.Attr("epsilon")); auto place = ctx.GetPlace(); auto stream = ctx.template device_context() .stream(); if (dpred) { LogLossBCEGrad(place, stream, pred, label, dloss, dpred); LogLossMuls(place, stream, dpred, 1 / (1 + 2 * epsilon), dpred); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL(log_loss, ops::LogLossNPUKernel); REGISTER_OP_NPU_KERNEL(log_loss_grad, ops::LogLossGradNPUKernel);