#!/bin/bash set -e function test_launch_ps(){ fleetrun --server_num=2 --worker_num=2 fleet_ps_training.py 2> ut.elog if grep -q "server are killed" ut.elog; then echo "test pserver launch succeed" else echo "test pserver launch failed" exit -1 fi fleetrun --servers="127.0.0.1:6780,127.0.0.1:6781" --workers="127.0.0.1:6782,127.0.0.1:6783" fleet_ps_training.py 2> ut.elog if grep -q "server are killed" ut.elog; then echo "test pserver launch succeed" else echo "test pserver launch failed" exit -1 fi fleetrun --servers="127.0.0.1:6780,127.0.0.1:6781" --workers="127.0.0.1,127.0.0.1" fleet_ps_training.py 2> ut.elog if grep -q "server are killed" ut.elog; then echo "test pserver launch succeed" else echo "test pserver launch failed" exit -1 fi } if [[ ${WITH_GPU} == "OFF" ]]; then test_launch_ps exit 0 fi test_launch_ps # use default values fleetrun multi_process.py fleetrun # use paddlecloud echo "begin test use paddlecloud" cluster_node_ips="127.0.0.1,127.0.0.2" export PADDLE_TRAINERS_NUM=2 export POD_IP=127.0.0.1 export PADDLE_TRAINERS=127.0.0.1,127.0.0.2 export PADDLE_TRAINER_ID=0 export PADDLE_PORT=35789 export TRAINER_PORTS_NUM=2 distributed_args="--ips=${cluster_node_ips} --gpus=0,1 --log_dir=testlog" CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} multi_process.py fleetrun str1="selected_gpus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0" str2="selected_gpus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1" file_0="multi_process_fleetrun.check_0.log" file_1="multi_process_fleetrun.check_1.log" echo "paddlecloud params test" if grep -q "$str1" "$file_0"; then echo "find trainer 0" else echo "not find trainer 0" exit -1 fi if grep -q "$str2" "$file_1"; then echo "find trainer 1" else echo "not find trainer 1" exit -1 fi # test async poll process if [ -f $file_0 ]; then rm $file_0 fi if [ -f $file_1 ]; then rm $file_1 fi unset PADDLE_PORT unset TRAINER_PORTS_NUM echo "" echo "paddle.distributed.launch async poll process test" if ! CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} multi_process.py fleetrun abort; then echo "train abort as planned" fi abort_str1="abort>>> selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0" if grep -q "$abort_str1" "$file_0"; then echo "trainer 0 abort as planned" else echo "trainer 0 not abort as planned" exit -1 fi if [ ! -f $file_1 ]; then echo "trainer 1 terminate as planned" else echo "trainer 1 not terminate as planned" exit -1 fi #test for random ports file_0_0="test_launch_filelock_0_0.log" file_1_0="test_launch_filelock_1_0.log" rm -rf $file_0_0 $file_0_1 distributed_args="--gpus=0,1 --log_dir=testlog" export PADDLE_LAUNCH_LOG="test_launch_filelock_0" CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} find_ports.py str_0="worker_endpoints:127.0.0.1:6070,127.0.0.1:6071"