// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/hostdevice.h" #include "paddle/phi/kernels/graph_send_recv_kernel.h" namespace phi { template struct GraphSendRecvSumCUDAFunctor { DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i, const IndexT& out_i) { paddle::platform::CudaAtomicAdd(output + out_i, *(params + in_i)); } }; template struct GraphSendRecvMaxCUDAFunctor { DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i, const IndexT& out_i) { paddle::platform::CudaAtomicMax(output + out_i, *(params + in_i)); } }; template struct GraphSendRecvMinCUDAFunctor { DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i, const IndexT& out_i) { paddle::platform::CudaAtomicMin(output + out_i, *(params + in_i)); } }; template __global__ void GraphSendRecvCUDAKernel(const T* params, const IndexT* src_indices, const IndexT* dst_indices, T* output, size_t index_size, size_t slice_size, Functor functor) { CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) { int64_t indices_i = i / slice_size; int64_t slice_i = i - indices_i * slice_size; IndexT src_i = src_indices[indices_i]; IndexT dst_i = dst_indices[indices_i]; int64_t in_i = src_i * slice_size + slice_i; int64_t out_i = dst_i * slice_size + slice_i; functor(params, output, in_i, out_i); } } // For max template __global__ void InputResetMaxCUDAKernel(T* output, size_t input_size, size_t slice_size) { CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) { if (*(output + i) == std::numeric_limits::lowest()) { *(output + i) = 0; } } } // For min template __global__ void InputResetMinCUDAKernel(T* output, size_t input_size, size_t slice_size) { CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) { if (*(output + i) == std::numeric_limits::max()) { *(output + i) = 0; } } } // Get dst_count template __global__ void ComputeCountCUDAKernel(int32_t* count, const IndexT* dst_indices, size_t index_size) { CUDA_KERNEL_LOOP_TYPE(i, index_size, int64_t) { IndexT dst_i = dst_indices[i]; paddle::platform::CudaAtomicAdd(count + dst_i, 1); } } // For forward mean template __global__ void ManipulateMeanCUDAKernel(T* output, int32_t* count, size_t input_size, size_t slice_size) { CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) { int64_t c_index = i / slice_size; if (*(count + c_index) > 1) { *(output + i) = *(output + i) / *(count + c_index); } } } // For backward mean template __global__ void ManipulateMeanGradCUDAKernel(const T* params, const IndexT* src_indices, const IndexT* dst_indices, T* output, size_t index_size, size_t slice_size, const int32_t* dst_count) { CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) { int64_t indices_i = i / slice_size; int64_t slice_i = i - indices_i * slice_size; IndexT src_i = src_indices[indices_i]; IndexT dst_i = dst_indices[indices_i]; int64_t in_i = src_i * slice_size + slice_i; int64_t out_i = dst_i * slice_size + slice_i; paddle::platform::CudaAtomicAdd(output + out_i, *(params + in_i) / dst_count[src_i]); } } // For backward min and max template __global__ void ManipulateMinMaxGradCUDAKernel(const T* params, const IndexT* src_indices, const IndexT* dst_indices, T* output, size_t index_size, size_t slice_size, const T* ptr_input, const T* ptr_output) { CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) { int64_t indices_i = i / slice_size; int64_t slice_i = i - indices_i * slice_size; IndexT src_i = src_indices[indices_i]; IndexT dst_i = dst_indices[indices_i]; int64_t in_i = src_i * slice_size + slice_i; int64_t out_i = dst_i * slice_size + slice_i; paddle::platform::CudaAtomicAdd( output + out_i, *(params + in_i) * (*(ptr_input + out_i) == *(ptr_output + in_i))); } } } // namespace phi