/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/fc_op.h" namespace paddle { namespace operators { void FCOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE(ctx->HasInput("Input"), "X(Input) of Fully Connected should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Out(Output) of Fully Connected should not be null."); PADDLE_ENFORCE(ctx->HasInput("W"), "W(Input) of Fully Connected should not be null."); auto in_dims = ctx->GetInputDim("Input"); auto w_dims = ctx->GetInputDim("W"); std::vector output_shape({in_dims[0], w_dims[1]}); PADDLE_ENFORCE(in_dims.size() == 4, "Fully Connected input should be 4-D tensor."); PADDLE_ENFORCE(w_dims.size() == 2, "Fully Connected input should be 2-D tensor."); ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); ctx->ShareLoD("Input", "Out"); } framework::OpKernelType FCOp::GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library{framework::LibraryType::kMKLDNN}; framework::DataLayout layout{framework::DataLayout::kAnyLayout}; return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), layout, library); } void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const { auto in_dims = ctx->GetInputDim("Input"); auto w_dims = ctx->GetInputDim("W"); if (ctx->HasOutput(framework::GradVarName("Input"))) { ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); } if (ctx->HasOutput(framework::GradVarName("W"))) { ctx->SetOutputDim(framework::GradVarName("W"), w_dims); } } framework::OpKernelType FCOpGrad::GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library{framework::LibraryType::kMKLDNN}; framework::DataLayout layout{framework::DataLayout::kAnyLayout}; return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), layout, library); } FCOpMaker::FCOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", "(Tensor) The input tensor of fully connected operator. " "The format of input tensor is NCHW, where N is batch size, C is the " "number of channels, H is the height of the feature, " "and W is the width of the feature."); AddInput("W", "(Tensor), The second input tensor of fc op."); AddOutput("Out", "(Tensor) The output tensor of fully connected operator. " "The format of output tensor is also NCHW, " "where N is batch size, C is the number of channels, " "H is the height of the feature, " "and W is the width of the feature."); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddAttr("bias_attr", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddComment(R"DOC( Fully Connected Operator. The fully connected operation calculates the output based on the input, weights and bias attribute. The size of each dimension of the parameters checked in the infer-shape. Input(Input) is NCHW or NC format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Weights(W) is OIHW or OI format. Where H is the height of the feature, W is the width of the feature, O is the height of output, and I is the number of channels. Output(Out) is NC format. Where N is batch size, and C is the number of channels. The matrix of bias is generated by the mkldnn framework, when the bias_attr is True. Additional parametrs are use_mkldnn and bias_attr. The input(X) size and output(Out) size may be diffrent. Example: Input: Input shape: $(N, C_{in}, H_{in}, W_{in})$ Weight shape: $(O_{out}, I_{in}, H_{in}, W_{in})$ Bias shape: $(O_{out})$ Output: Output shape: $(N, C_{out})$ )DOC"); } } // namespace operators } // namespace paddle REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad, paddle::operators::FCOpGrad);