/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/memory/detail/memory_block.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/place.h" // This unit test is an example comparing the performance between using pinned // memory and not. In general, using pinned memory will be faster. template __global__ void Kernel(T* output, int dim) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < dim) { output[tid] = output[tid] * output[tid] / 100; } } template float test_pinned_memory() { Place cpu_place; paddle::platform::CUDAPlace cuda_place; const int data_size = 4096; const int iteration = 10; // create event start and end gpuEvent_t start_e, stop_e, copying_e; float elapsedTime = 0; #ifdef PADDLE_WITH_HIP hipEventCreate(&start_e); hipEventCreate(&stop_e); hipEventCreate(©ing_e); #else cudaEventCreate(&start_e); cudaEventCreate(&stop_e); cudaEventCreate(©ing_e); #endif // create computation stream, data copying stream gpuStream_t computation_stream, copying_stream; #ifdef PADDLE_WITH_HIP hipStreamCreate(&computation_stream); hipStreamCreate(©ing_stream); #else cudaStreamCreate(&computation_stream); cudaStreamCreate(©ing_stream); #endif // create record event, pinned memory, gpu memory std::vector record_event(iteration); std::vector input_pinned_mem(iteration); std::vector gpu_mem(iteration); std::vector output_pinned_mem(iteration); // initial data for (int j = 0; j < iteration; ++j) { #ifdef PADDLE_WITH_HIP hipEventCreateWithFlags(&record_event[j], hipEventDisableTiming); hipEventCreate(&(record_event[j])); #else cudaEventCreateWithFlags(&record_event[j], cudaEventDisableTiming); cudaEventCreate(&(record_event[j])); #endif input_pinned_mem[j] = static_cast( paddle::memory::Alloc(cpu_place, data_size * sizeof(float))); output_pinned_mem[j] = static_cast( paddle::memory::Alloc(cpu_place, data_size * sizeof(float))); gpu_mem[j] = static_cast( paddle::memory::Alloc(cuda_place, data_size * sizeof(float))); for (int k = 0; k < data_size; ++k) { input_pinned_mem[j][k] = k; } } #ifdef PADDLE_WITH_HIP hipEventRecord(start_e, computation_stream); #else cudaEventRecord(start_e, computation_stream); #endif // computation for (int m = 0; m < 30; ++m) { for (int i = 0; i < iteration; ++i) { // cpu -> GPU on computation stream. // note: this operation is async for pinned memory. paddle::memory::Copy(cuda_place, gpu_mem[i], cpu_place, input_pinned_mem[i], data_size * sizeof(float), computation_stream); // call kernel on computation stream. Kernel<<<4, 1024, 0, computation_stream>>>(gpu_mem[i], data_size); #ifdef PADDLE_WITH_HIP // record event_computation on computation stream hipEventRecord(record_event[i], computation_stream); // wait event_computation on copy stream. // note: this operation is async. hipStreamWaitEvent(copying_stream, record_event[i], 0); #else // record event_computation on computation stream cudaEventRecord(record_event[i], computation_stream); // wait event_computation on copy stream. // note: this operation is async. cudaStreamWaitEvent(copying_stream, record_event[i], 0); #endif // copy data GPU->CPU, on copy stream. // note: this operation is async for pinned memory. paddle::memory::Copy(cpu_place, output_pinned_mem[i], cuda_place, gpu_mem[i], data_size * sizeof(float), copying_stream); } } #ifdef PADDLE_WITH_HIP hipEventRecord(copying_e, copying_stream); hipStreamWaitEvent(computation_stream, copying_e, 0); hipEventRecord(stop_e, computation_stream); hipEventSynchronize(start_e); hipEventSynchronize(stop_e); hipEventElapsedTime(&elapsedTime, start_e, stop_e); #else cudaEventRecord(copying_e, copying_stream); cudaStreamWaitEvent(computation_stream, copying_e, 0); cudaEventRecord(stop_e, computation_stream); cudaEventSynchronize(start_e); cudaEventSynchronize(stop_e); cudaEventElapsedTime(&elapsedTime, start_e, stop_e); #endif // std::cout << cpu_place << " " // << "time consume:" << elapsedTime / 30 << std::endl; for (int l = 0; l < iteration; ++l) { for (int k = 0; k < data_size; ++k) { float temp = input_pinned_mem[l][k]; temp = temp * temp / 100; EXPECT_FLOAT_EQ(temp, output_pinned_mem[l][k]); } } // destroy resource #ifdef PADDLE_WITH_HIP hipEventDestroy(copying_e); hipEventDestroy(start_e); hipEventDestroy(stop_e); #else cudaEventDestroy(copying_e); cudaEventDestroy(start_e); cudaEventDestroy(stop_e); #endif for (int j = 0; j < 10; ++j) { #ifdef PADDLE_WITH_HIP hipEventDestroy((record_event[j])); #else cudaEventDestroy((record_event[j])); #endif paddle::memory::Free(cpu_place, input_pinned_mem[j]); paddle::memory::Free(cpu_place, output_pinned_mem[j]); paddle::memory::Free(cuda_place, gpu_mem[j]); } return elapsedTime / 30; } TEST(CPUANDCUDAPinned, CPUAllocatorAndCUDAPinnedAllocator) { // Generally speaking, operation on pinned_memory is faster than that on // unpinned-memory, but if this unit test fails frequently, please close this // test for the time being. float time1 = test_pinned_memory(); float time2 = test_pinned_memory(); EXPECT_GT(time1, time2); }