# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import argparse import os import sys import signal import time import socket from contextlib import closing from six import string_types import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.unique_name as nameGen from paddle.fluid import core import paddle.distributed.fleet as fleet from paddle.fluid.incubate.fleet.base import role_maker import unittest from multiprocessing import Process import paddle.fluid.layers as layers from functools import reduce from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main paddle.enable_static() class TestParallelEmbeddingAPI(TestCollectiveAPIRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program, rank): with fluid.program_guard(main_prog, startup_program): fleet.init(is_collective=True) np.random.seed(2020) # (num_embeddings, embedding_dim) = (12, 8) size = (12, 8) np_array = np.random.rand(size[0], size[1]) paddle.seed(2020) data_in = paddle.randint(0, size[0], shape=(10, 4)) data = paddle.static.data(name='tindata', shape=[10, 1000], dtype="float32") per_part_size = size[0] // 2 if rank == 0: param_attr = paddle.fluid.ParamAttr( initializer=paddle.fluid.initializer.NumpyArrayInitializer( np_array[0:per_part_size, :]), ) else: param_attr = paddle.fluid.ParamAttr( initializer=paddle.fluid.initializer.NumpyArrayInitializer( np_array[per_part_size:size[0], :]), ) emb_out = paddle.distributed.split(data_in, size, operation="embedding", num_partitions=2, weight_attr=param_attr) return [data_in, emb_out] if __name__ == "__main__": runtime_main(TestParallelEmbeddingAPI, "parallel_embedding")