# Fluid Benchmark This directory contains several models configurations and tools that used to run Fluid benchmarks for local and distributed training. ## Run the Benchmark To start, run the following command to get the full help message: ```bash python fluid_benchmark.py --help ``` Currently supported `--model` argument include: * mnist * resnet * you can chose to use different dataset using `--data_set cifar10` or `--data_set flowers`. * vgg * stacked_dynamic_lstm * machine_translation * Run the following command to start a benchmark job locally: ```bash python fluid_benchmark.py --model mnist --device GPU ``` You can choose to use GPU/CPU training. With GPU training, you can specify `--gpus ` to run multi GPU training. * Run distributed training with parameter servers: * start parameter servers: ```bash PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver ``` * start trainers: ```bash PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver ``` * Run distributed training using NCCL2 ```bash PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2 ``` ## Prepare the RecordIO file to Achieve Better Performance Run the following command will generate RecordIO files like "mnist.recordio" under the path and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size at any time using `fluid.batch`. ```bash python -c 'from recordio_converter import *; prepare_mnist("data", 1)' ``` ## Run Distributed Benchmark on Kubernetes Cluster You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will have to start all those processes mannually on each node, which is not recommended. To build the Docker image, you need to choose a paddle "whl" package to run with, you may either download it from http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_en.html or build it by your own. Once you've got the "whl" package, put it under the current directory and run: ```bash docker build -t [your docker image name]:[your docker image tag] . ``` Then push the image to a Docker registry that your Kubernetes cluster can reach. We provide a script `kube_gen_job.py` to generate Kubernetes yaml files to submit distributed benchmark jobs to your cluster. To generate a job yaml, just run: ```bash python kube_gen_job.py --jobname myjob --pscpu 4 --cpu 8 --gpu 8 --psmemory 20 --memory 40 --pservers 4 --trainers 4 --entry "python fluid_benchmark.py --model mnist --gpus 8 --device GPU --update_method pserver " --disttype pserver ``` Then the yaml files are generated under directory `myjob`, you can run: ```bash kubectl create -f myjob/ ``` The job shall start. ## Notes for Run Fluid Distributed with NCCL2 and RDMA Before running NCCL2 distributed jobs, please check that whether your node has multiple network interfaces, try to add the environment variable `export NCCL_SOCKET_IFNAME=eth0` to use your actual network device. To run high-performance distributed training, you must prepare your hardware environment to be able to run RDMA enabled network communication, please check out [this](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/cluster/nccl2_rdma_training.md) note for details.