# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest import paddle from paddle import fluid, nn import paddle.fluid.dygraph as dg import paddle.nn.functional as F import paddle.fluid.initializer as I class LinearTestCase(unittest.TestCase): def setUp(self): self.dtype = 'float32' self.input = np.ones((3, 1, 2)).astype(self.dtype) self.weight = np.ones((2, 2)).astype(self.dtype) self.bias = np.ones((2)).astype(self.dtype) self.place = paddle.CUDAPlace( 0) if core.is_compiled_with_cuda() else paddle.CPUPlace() def functional(self, place): paddle.disable_static(place) input = paddle.to_tensor(self.input) weight = paddle.to_tensor(self.weight) bias = paddle.to_tensor(self.bias) out = F.linear(input, weight, bias) return out.numpy() def paddle_nn_layer(self, place): paddle.disable_static(place) input = paddle.to_tensor(self.input) weight_attr = fluid.ParamAttr( name="linear_weight", learning_rate=1.0, trainable=False, regularizer=None, initializer=paddle.fluid.initializer.ConstantInitializer(value=1.0)) bias_attr = fluid.ParamAttr( name="linear_bias", learning_rate=1.0, trainable=False, regularizer=None, initializer=paddle.fluid.initializer.ConstantInitializer(value=1.0)) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr) y = linear(input) return y.numpy() def numpy_cal(self): res = np.matmul(self.input, self.weight) + self.bias return res def test_error(self, place=paddle.CPUPlace()): res_f = self.functional(place) res_nn = self.paddle_nn_layer(place) res_np = self.numpy_cal() np.testing.assert_array_almost_equal(res_f, res_nn) np.testing.assert_array_almost_equal(res_nn, res_np) def test_weight_init(self): if not paddle.is_compiled_with_cuda(): return paddle.seed(100) linear = paddle.nn.Linear(2, 3, weight_attr=paddle.nn.initializer.Normal( 0, 1.)) paddle.nn.utils._stride_column(linear.weight) expect = [[1.4349908, -0.8099171, -2.64788], [-1.4981681, -1.1784115, -0.023253186]] np.testing.assert_allclose(linear.weight.numpy(), expect, rtol=1e-05) linear = paddle.nn.Linear(2, 3) expect = [[0.73261100, 0.43836895, 0.07908206], [0.85075015, -1.04724526, 0.64371765]] np.testing.assert_allclose(linear.weight.numpy(), expect, rtol=1e-05) if __name__ == "__main__": unittest.main()