# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator from op_test import OpTest import paddle class TestSparseSquareOp(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] self.row_numel = 12 x_selected_rows = scope.var('X').get_selected_rows() x_selected_rows.set_height(height) x_selected_rows.set_rows(rows) np_array = np.ones((len(rows), self.row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 x_tensor = x_selected_rows.get_tensor() x_tensor.set(np_array, place) out_selected_rows = scope.var('Out').get_selected_rows() # create and run sqrt operator square_op = Operator("square", X='X', Out='Out') square_op.run(scope, place) # get and compare result result_array = np.array(out_selected_rows.get_tensor()) np.testing.assert_array_equal(result_array, np.square(np_array)) def test_sparse_acti(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) class TestSparseSqrtOp(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] self.row_numel = 12 x_selected_rows = scope.var('X1').get_selected_rows() x_selected_rows.set_height(height) x_selected_rows.set_rows(rows) np_array = np.ones((len(rows), self.row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 x_tensor = x_selected_rows.get_tensor() x_tensor.set(np_array, place) out_selected_rows = scope.var('Out1').get_selected_rows() # create and run sqrt operator sqrt_op = Operator("sqrt", X='X1', Out='Out1') sqrt_op.run(scope, place) # get and compare result result_array = np.array(out_selected_rows.get_tensor()) np.testing.assert_allclose(result_array, np.sqrt(np_array), rtol=1e-05) def test_sparse_acti(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) if __name__ == "__main__": paddle.enable_static() unittest.main()