# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .. import functional as F from paddle.nn import Layer __all__ = [] class ReLU(Layer): """ Sparse ReLU Activation. .. math:: ReLU(x) = max(x, 0) Parameters: name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: - input: Sparse Tensor with any shape. - output: Sparse Tensor with the same shape as input. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] dense_x = paddle.to_tensor(x, dtype='float32') sparse_dim = 2 sparse_x = dense_x.to_sparse_coo(sparse_dim) relu = paddle.incubate.sparse.nn.ReLU() out = relu(sparse_x) #out.values: [0., 2., 0., 4., 5.] """ def __init__(self, name=None): super(ReLU, self).__init__() self._name = name def forward(self, x): return F.relu(x, self._name) def extra_repr(self): name_str = 'name={}'.format(self._name) if self._name else '' return name_str class Softmax(Layer): """ sparse softmax activation, x must be SparseCsrTensor or SparseCooTensor. Note: Only supported axis=-1 for SparseCsrTensor, which is faster when read data by row (axis=-1). From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` in the matrix, we have: .. math:: softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))} Parameters: axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: - input: SparseCooTensor / SparseCsrTensor with any shape. - output: Sparse Tensor with the same shape as input. Examples: .. code-block:: python import paddle import numpy as np from paddle.fluid.framework import _test_eager_guard paddle.seed(100) with _test_eager_guard(): mask = np.random.rand(3, 4) < 0.5 np_x = np.random.rand(3, 4) * mask # [[0. 0. 0.96823406 0.19722934] # [0.94373937 0. 0.02060066 0.71456372] # [0. 0. 0. 0.98275049]] csr = paddle.to_tensor(np_x).to_sparse_csr() # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 5, 6], # cols=[2, 3, 0, 2, 3, 3], # values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372, # 0.98275049]) m = paddle.incubate.sparse.nn.Softmax() out = m(csr) # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 5, 6], # cols=[2, 3, 0, 2, 3, 3], # values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269, # 1. ]) """ def __init__(self, axis=-1, name=None): super(Softmax, self).__init__() self._axis = axis self._name = name def forward(self, x): return F.softmax(x, self._axis, self._name) def extra_repr(self): name_str = 'name={}'.format(self._name) if self._name else '' return name_str