# Benchmark Machine: - Server - Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket - Laptop - DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD - i5 MacBook Pro (Retina, 13-inch, Early 2015) - Desktop - i7-6700k System: CentOS 7.3.1611 PaddlePaddle: commit cfa86a3f70cb5f2517a802f32f2c88d48ab4e0e0 - MKL-DNN tag v0.10 - MKLML 2018.0.20170720 - OpenBLAS v0.2.20 On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. ## Benchmark Model ### Server Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz Input image size - 3 * 224 * 224, Time: images/second - VGG-19 | BatchSize | 64 | 128 | 256 | |--------------|-------| -----| --------| | OpenBLAS | 7.86 | 9.02 | 10.62 | | MKLML | 11.80 | 13.43 | 16.21 | | MKL-DNN | 29.07 | 30.40 | 31.06 | chart on batch size 128 TBD - ResNet - GoogLeNet ### Laptop TBD ### Desktop TBD