// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/instance_norm_kernel.h" #include #include #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/eigen/extensions.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template void InstanceNormKernel(const Context& dev_ctx, const DenseTensor& x, paddle::optional scale, paddle::optional bias, float epsilon_f, DenseTensor* y, DenseTensor* saved_mean, DenseTensor* saved_variance) { const auto& x_dims = x.dims(); T epsilon = static_cast(epsilon_f); const int N = x_dims[0]; const int C = x_dims[1]; const int NxC = N * C; const int sample_size = x.numel() / N / C; auto* place = dev_ctx.eigen_device(); Eigen::DSizes shape(NxC, sample_size); // Once eigen on Windows is updated, the if branch can be removed. #ifndef EIGEN_HAS_INDEX_LIST Eigen::DSizes bcast(1, sample_size); Eigen::DSizes C_shape(C, 1); Eigen::DSizes NxC_shape(NxC, 1); Eigen::DSizes rdims(1); #else Eigen::IndexList, int> bcast; bcast.set(1, sample_size); Eigen::IndexList> C_shape; C_shape.set(0, C); Eigen::IndexList> NxC_shape; NxC_shape.set(0, NxC); Eigen::IndexList> rdims; #endif phi::funcs::SetConstant set_constant; dev_ctx.template Alloc(saved_mean); dev_ctx.template Alloc(saved_variance); set_constant(dev_ctx, saved_mean, static_cast(0)); set_constant(dev_ctx, saved_variance, static_cast(0)); auto saved_mean_a = EigenVector::Flatten(*saved_mean); auto saved_mean_e = saved_mean_a.reshape(NxC_shape); auto saved_variance_a = EigenVector::Flatten(*saved_variance); auto saved_variance_e = saved_variance_a.reshape(NxC_shape); auto x_e = EigenVector::Flatten(x); auto x_arr = x_e.reshape(shape); saved_mean_e.device(*place) = x_arr.mean(rdims); auto saved_variance_arr = (x_arr - saved_mean_e.broadcast(bcast)).square().mean(rdims) + epsilon; saved_variance_e.device(*place) = saved_variance_arr.sqrt().inverse(); const auto scale_ptr = scale.get_ptr(); const auto bias_ptr = bias.get_ptr(); DenseTensor scale_data; DenseTensor bias_data; if (!scale_ptr) { scale_data.Resize({C}); dev_ctx.template Alloc(&scale_data); set_constant(dev_ctx, &scale_data, static_cast(1)); } if (!bias_ptr) { bias_data.Resize({C}); dev_ctx.template Alloc(&bias_data); set_constant(dev_ctx, &bias_data, static_cast(0)); } auto scale_e = scale_ptr ? EigenVector::Flatten(*scale_ptr) : EigenVector::Flatten(const_cast(scale_data)); auto scale_arr = scale_e.reshape(C_shape); auto bias_e = bias_ptr ? EigenVector::Flatten(*bias_ptr) : EigenVector::Flatten(const_cast(bias_data)); auto bias_arr = bias_e.reshape(C_shape); dev_ctx.template Alloc(y); auto y_e = EigenVector::Flatten(*y); auto y_arr = y_e.reshape(shape); // (x - mean) * inv_std * scale + bias Eigen::DSizes bcast_param(N, sample_size); y_arr.device(*place) = (x_arr - saved_mean_e.broadcast(bcast)) * saved_variance_e.broadcast(bcast) * scale_arr.broadcast(bcast_param) + bias_arr.broadcast(bcast_param); } } // namespace phi PD_REGISTER_KERNEL( instance_norm, CPU, ALL_LAYOUT, phi::InstanceNormKernel, float, double) {}