# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gzip import struct import numpy as np from PIL import Image import paddle from paddle.io import Dataset from paddle.dataset.common import _check_exists_and_download __all__ = [] class MNIST(Dataset): """ Implementation of `MNIST `_ dataset. Args: image_path (str, optional): Path to image file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist. label_path (str, optional): Path to label file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist. mode (str, optional): Either train or test mode. Default 'train'. transform (Callable, optional): Transform to perform on image, None for no transform. Default: None. download (bool, optional): Download dataset automatically if :attr:`image_path` :attr:`label_path` is not set. Default: True. backend (str, optional): Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend `, default backend is 'pil'. Default: None. Returns: :ref:`api_paddle_io_Dataset`. An instance of MNIST dataset. Examples: .. code-block:: python import itertools import paddle.vision.transforms as T from paddle.vision.datasets import MNIST mnist = MNIST() print(len(mnist)) # 60000 for i in range(5): # only show first 5 images img, label = mnist[i] # do something with img and label print(type(img), img.size, label) # (28, 28) [5] transform = T.Compose( [ T.ToTensor(), T.Normalize( mean=[127.5], std=[127.5], ), ] ) mnist_test = MNIST( mode="test", transform=transform, # apply transform to every image backend="cv2", # use OpenCV as image transform backend ) print(len(mnist_test)) # 10000 for img, label in itertools.islice(iter(mnist_test), 5): # only show first 5 images # do something with img and label print(type(img), img.shape, label) # [1, 28, 28] [7] """ NAME = 'mnist' URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/' TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz' TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3' TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz' TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c' TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz' TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873' TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz' TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432' def __init__(self, image_path=None, label_path=None, mode='train', transform=None, download=True, backend=None): assert mode.lower() in ['train', 'test'], \ "mode should be 'train' or 'test', but got {}".format(mode) if backend is None: backend = paddle.vision.get_image_backend() if backend not in ['pil', 'cv2']: raise ValueError( "Expected backend are one of ['pil', 'cv2'], but got {}".format( backend)) self.backend = backend self.mode = mode.lower() self.image_path = image_path if self.image_path is None: assert download, "image_path is not set and downloading automatically is disabled" image_url = self.TRAIN_IMAGE_URL if mode == 'train' else self.TEST_IMAGE_URL image_md5 = self.TRAIN_IMAGE_MD5 if mode == 'train' else self.TEST_IMAGE_MD5 self.image_path = _check_exists_and_download( image_path, image_url, image_md5, self.NAME, download) self.label_path = label_path if self.label_path is None: assert download, "label_path is not set and downloading automatically is disabled" label_url = self.TRAIN_LABEL_URL if self.mode == 'train' else self.TEST_LABEL_URL label_md5 = self.TRAIN_LABEL_MD5 if self.mode == 'train' else self.TEST_LABEL_MD5 self.label_path = _check_exists_and_download( label_path, label_url, label_md5, self.NAME, download) self.transform = transform # read dataset into memory self._parse_dataset() self.dtype = paddle.get_default_dtype() def _parse_dataset(self, buffer_size=100): self.images = [] self.labels = [] with gzip.GzipFile(self.image_path, 'rb') as image_file: img_buf = image_file.read() with gzip.GzipFile(self.label_path, 'rb') as label_file: lab_buf = label_file.read() step_label = 0 offset_img = 0 # read from Big-endian # get file info from magic byte # image file : 16B magic_byte_img = '>IIII' magic_img, image_num, rows, cols = struct.unpack_from( magic_byte_img, img_buf, offset_img) offset_img += struct.calcsize(magic_byte_img) offset_lab = 0 # label file : 8B magic_byte_lab = '>II' magic_lab, label_num = struct.unpack_from( magic_byte_lab, lab_buf, offset_lab) offset_lab += struct.calcsize(magic_byte_lab) while True: if step_label >= label_num: break fmt_label = '>' + str(buffer_size) + 'B' labels = struct.unpack_from(fmt_label, lab_buf, offset_lab) offset_lab += struct.calcsize(fmt_label) step_label += buffer_size fmt_images = '>' + str(buffer_size * rows * cols) + 'B' images_temp = struct.unpack_from(fmt_images, img_buf, offset_img) images = np.reshape( images_temp, (buffer_size, rows * cols)).astype('float32') offset_img += struct.calcsize(fmt_images) for i in range(buffer_size): self.images.append(images[i, :]) self.labels.append( np.array([labels[i]]).astype('int64')) def __getitem__(self, idx): image, label = self.images[idx], self.labels[idx] image = np.reshape(image, [28, 28]) if self.backend == 'pil': image = Image.fromarray(image.astype('uint8'), mode='L') if self.transform is not None: image = self.transform(image) if self.backend == 'pil': return image, label.astype('int64') return image.astype(self.dtype), label.astype('int64') def __len__(self): return len(self.labels) class FashionMNIST(MNIST): """ Implementation of `Fashion-MNIST `_ dataset. Args: image_path (str, optional): Path to image file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist. label_path (str, optional): Path to label file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist. mode (str, optional): Either train or test mode. Default 'train'. transform (Callable, optional): Transform to perform on image, None for no transform. Default: None. download (bool, optional): Whether to download dataset automatically if :attr:`image_path` :attr:`label_path` is not set. Default: True. backend (str, optional): Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend `, default backend is 'pil'. Default: None. Returns: :ref:`api_paddle_io_Dataset`. An instance of FashionMNIST dataset. Examples: .. code-block:: python import itertools import paddle.vision.transforms as T from paddle.vision.datasets import FashionMNIST fashion_mnist = FashionMNIST() print(len(fashion_mnist)) # 60000 for i in range(5): # only show first 5 images img, label = fashion_mnist[i] # do something with img and label print(type(img), img.size, label) # (28, 28) [9] transform = T.Compose( [ T.ToTensor(), T.Normalize( mean=[127.5], std=[127.5], ), ] ) fashion_mnist_test = FashionMNIST( mode="test", transform=transform, # apply transform to every image backend="cv2", # use OpenCV as image transform backend ) print(len(fashion_mnist_test)) # 10000 for img, label in itertools.islice(iter(fashion_mnist_test), 5): # only show first 5 images # do something with img and label print(type(img), img.shape, label) # [1, 28, 28] [9] """ NAME = 'fashion-mnist' URL_PREFIX = 'https://dataset.bj.bcebos.com/fashion_mnist/' TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz' TEST_IMAGE_MD5 = 'bef4ecab320f06d8554ea6380940ec79' TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz' TEST_LABEL_MD5 = 'bb300cfdad3c16e7a12a480ee83cd310' TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz' TRAIN_IMAGE_MD5 = '8d4fb7e6c68d591d4c3dfef9ec88bf0d' TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz' TRAIN_LABEL_MD5 = '25c81989df183df01b3e8a0aad5dffbe'