# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tarfile import numpy as np from PIL import Image import paddle from paddle.io import Dataset from paddle.utils import try_import from paddle.dataset.common import _check_exists_and_download __all__ = [] DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz' LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat' SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat' DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' # In official 'readme', tstid is the flag of test data # and trnid is the flag of train data. But test data is more than train data. # So we exchange the train data and test data. MODE_FLAG_MAP = {'train': 'tstid', 'test': 'trnid', 'valid': 'valid'} class Flowers(Dataset): """ Implementation of `Flowers102 `_ dataset. Args: data_file (str, optional): Path to data file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/. label_file (str, optional): Path to label file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/. setid_file (str, optional): Path to subset index file, can be set None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/. mode (str, optional): Either train or test mode. Default 'train'. transform (Callable, optional): transform to perform on image, None for no transform. Default: None. download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default: True. backend (str, optional): Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend `, default backend is 'pil'. Default: None. Returns: :ref:`api_paddle_io_Dataset`. An instance of Flowers dataset. Examples: .. code-block:: python import itertools import paddle.vision.transforms as T from paddle.vision.datasets import Flowers flowers = Flowers() print(len(flowers)) # 6149 for i in range(5): # only show first 5 images img, label = flowers[i] # do something with img and label print(type(img), img.size, label) # (523, 500) [1] transform = T.Compose( [ T.Resize(64), T.ToTensor(), T.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], to_rgb=True, ), ] ) flowers_test = Flowers( mode="test", transform=transform, # apply transform to every image backend="cv2", # use OpenCV as image transform backend ) print(len(flowers_test)) # 1020 for img, label in itertools.islice(iter(flowers_test), 5): # only show first 5 images # do something with img and label print(type(img), img.shape, label) # [3, 64, 96] [1] """ def __init__(self, data_file=None, label_file=None, setid_file=None, mode='train', transform=None, download=True, backend=None): assert mode.lower() in ['train', 'valid', 'test'], \ "mode should be 'train', 'valid' or 'test', but got {}".format(mode) if backend is None: backend = paddle.vision.get_image_backend() if backend not in ['pil', 'cv2']: raise ValueError( "Expected backend are one of ['pil', 'cv2'], but got {}".format( backend)) self.backend = backend flag = MODE_FLAG_MAP[mode.lower()] if not data_file: assert download, "data_file is not set and downloading automatically is disabled" data_file = _check_exists_and_download(data_file, DATA_URL, DATA_MD5, 'flowers', download) if not label_file: assert download, "label_file is not set and downloading automatically is disabled" label_file = _check_exists_and_download(label_file, LABEL_URL, LABEL_MD5, 'flowers', download) if not setid_file: assert download, "setid_file is not set and downloading automatically is disabled" setid_file = _check_exists_and_download(setid_file, SETID_URL, SETID_MD5, 'flowers', download) self.transform = transform data_tar = tarfile.open(data_file) self.data_path = data_file.replace(".tgz", "/") if not os.path.exists(self.data_path): os.mkdir(self.data_path) data_tar.extractall(self.data_path) scio = try_import('scipy.io') self.labels = scio.loadmat(label_file)['labels'][0] self.indexes = scio.loadmat(setid_file)[flag][0] def __getitem__(self, idx): index = self.indexes[idx] label = np.array([self.labels[index - 1]]) img_name = "jpg/image_%05d.jpg" % index image = os.path.join(self.data_path, img_name) if self.backend == 'pil': image = Image.open(image) elif self.backend == 'cv2': image = np.array(Image.open(image)) if self.transform is not None: image = self.transform(image) if self.backend == 'pil': return image, label.astype('int64') return image.astype(paddle.get_default_dtype()), label.astype('int64') def __len__(self): return len(self.indexes)