#!/bin/bash set -e # use default values python -m paddle.distributed.launch multi_process.py # use paddlecloud cluster_node_ips="10.0.0.1" node_ip="10.0.0.1" export PADDLE_TRAINERS_NUM=2 export POD_IP=127.0.0.1 export PADDLE_TRAINERS=127.0.0.1,127.0.0.2 export PADDLE_TRAINER_ID=0 distributed_args="--use_paddlecloud --cluster_node_ips=${cluster_node_ips} --node_ip=${node_ip} --selected_gpus=0,1 --log_dir=testlog" python -m paddle.distributed.launch ${distributed_args} multi_process.py str1="selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0" str2="selected_gpus:1 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6171 trainer_id:1" file_0="multi_process.check_0.log" file_1="multi_process.check_1.log" echo "paddlecloud params test" if grep -q "$str1" "$file_0"; then echo "find trainer 0" else echo "not find trainer 0" exit -1 fi if grep -q "$str2" "$file_1"; then echo "find trainer 1" else echo "not find trainer 1" exit -1 fi # test async poll process if [ -f $file_0 ]; then rm $file_0 fi if [ -f $file_1 ]; then rm $file_1 fi echo "" echo "paddle.distributed.launch async poll process test" if ! python -m paddle.distributed.launch ${distributed_args} multi_process.py abort; then echo "train abort as planned" fi abort_str1="abort>>> selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0" if grep -q "$abort_str1" "$file_0"; then echo "trainer 0 abort as planned" else echo "trainer 0 not abort as planned" exit -1 fi if [ ! -f $file_1 ]; then echo "trainer 1 terminate as planned" else echo "trainer 1 not terminate as planned" exit -1 fi