// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/broadcast_op_handle.h" namespace paddle { namespace framework { namespace details { Tensor *GetTensorFromVar(Variable *in_var) { if (in_var->IsType()) { return in_var->GetMutable(); } else if (in_var->IsType()) { return in_var->GetMutable()->mutable_value(); } else { PADDLE_THROW("Var should be LoDTensor or SelectedRows"); } return nullptr; } BroadcastOpHandle::BroadcastOpHandle(const std::vector &local_scopes, const std::vector &places) : local_scopes_(local_scopes), places_(places) {} void BroadcastOpHandle::RunImpl() { // the input may have dummy var. std::vector in_var_handle; for (auto *in : inputs_) { auto *out_handle = dynamic_cast(in); if (out_handle) { in_var_handle.push_back(out_handle); } } PADDLE_ENFORCE_EQ(in_var_handle.size(), 1, "The number of input should be one."); // the output may have dummy var. std::vector out_var_handles; for (auto *out : outputs_) { auto *out_handle = dynamic_cast(out); if (out_handle) { out_var_handles.push_back(out_handle); } } PADDLE_ENFORCE_EQ( out_var_handles.size(), places_.size(), "The number of output should equal to the number of places."); // Wait input done, this Wait is asynchronous operation auto &in_place = in_var_handle[0]->place_; if (in_var_handle[0]->generated_op_) { for (auto *out : out_var_handles) { auto &out_p = out->place_; in_var_handle[0]->generated_op_->Wait(dev_ctxes_[out_p]); } } // auto in_scope_idx = in_var_handle[0]->scope_idx_; auto in_var = local_scopes_.at(in_scope_idx)->FindVar(in_var_handle[0]->name_); Tensor *in_tensor = GetTensorFromVar(in_var); for (auto *out : out_var_handles) { auto &out_p = out->place_; auto out_var = local_scopes_.at(out->scope_idx_)->FindVar(out->name_); PADDLE_ENFORCE_EQ(out_p.which(), in_place.which(), "Places must be all on CPU or all on CUDA."); if (in_var->IsType()) { auto &in_sr = in_var->Get(); auto out_sr = out_var->GetMutable(); if (&in_sr == out_sr) continue; out_sr->set_height(in_sr.height()); out_sr->set_rows(in_sr.rows()); out_sr->mutable_value()->Resize(in_sr.value().dims()); out_sr->mutable_value()->mutable_data(out_p, in_sr.value().type()); } else if (in_var->IsType()) { auto in_lod = in_var->Get(); auto out_lod = out_var->GetMutable(); if (&in_lod == out_lod) continue; out_lod->set_lod(in_lod.lod()); out_lod->Resize(in_lod.dims()); out_lod->mutable_data(out_p, in_lod.type()); } else { PADDLE_THROW("Var should be LoDTensor or SelectedRows."); } auto dev_ctx = dev_ctxes_[out_p]; RunAndRecordEvent(out_p, [in_tensor, out_var, dev_ctx, out_p] { Tensor *out_tensor = GetTensorFromVar(out_var); paddle::framework::TensorCopy(*in_tensor, out_p, *(dev_ctx), out_tensor); }); } } std::string BroadcastOpHandle::Name() const { return "broadcast"; } } // namespace details } // namespace framework } // namespace paddle