# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ """ __all__ = [ "BasePoolingType", "MaxPooling", "AvgPooling", "MaxWithMaskPooling", "CudnnMaxPooling", "CudnnAvgPooling", "CudnnAvgInclPadPooling", "SumPooling", "SquareRootNPooling" ] class BasePoolingType(object): """ Base Pooling Type. Note these pooling types are used for sequence input, not for images. Each PoolingType contains one parameter: :param name: pooling layer type name used by paddle. :type name: basestring """ def __init__(self, name): self.name = name class MaxPooling(BasePoolingType): """ Max pooling. Return the very large values for each dimension in sequence or time steps. .. math:: max(samples\\_of\\_a\\_sequence) :param output_max_index: True if output sequence max index instead of max value. None means use default value in proto. :type output_max_index: bool|None """ def __init__(self, output_max_index=None): BasePoolingType.__init__(self, "max") self.output_max_index = output_max_index class MaxWithMaskPooling(BasePoolingType): """ MaxWithMask pooling. Not only return the very large values for each dimension in sequence or time steps, but also the location indices of found maxinum values. """ def __init__(self): BasePoolingType.__init__(self, "max-pool-with-mask") class CudnnMaxPooling(BasePoolingType): """ Cudnn max pooling only support GPU. Return the maxinum value in the pooling window. """ def __init__(self): BasePoolingType.__init__(self, "cudnn-max-pool") class CudnnAvgPooling(BasePoolingType): """ Cudnn average pooling only support GPU. Return the average value in the pooling window. """ def __init__(self): BasePoolingType.__init__(self, "cudnn-avg-pool") class CudnnAvgInclPadPooling(BasePoolingType): """ Cudnn average pooling only support GPU. Return the average value in the pooling window taking into account the padding cells. """ def __init__(self): BasePoolingType.__init__(self, "cudnn-avg-incl-pad-pool") class AvgPooling(BasePoolingType): """ Average pooling. Return the average values for each dimension in sequence or time steps. .. math:: sum(samples\\_of\\_a\\_sequence)/sample\\_num """ STRATEGY_AVG = "average" STRATEGY_SUM = "sum" STRATEGY_SQROOTN = "squarerootn" def __init__(self, strategy=STRATEGY_AVG): BasePoolingType.__init__(self, "average") self.strategy = strategy class SumPooling(AvgPooling): """ Sum pooling. Return the sum values of each dimension in sequence or time steps. .. math:: sum(samples\\_of\\_a\\_sequence) """ def __init__(self): AvgPooling.__init__(self, AvgPooling.STRATEGY_SUM) class SquareRootNPooling(AvgPooling): """ Square Root Pooling. Return the square root values of each dimension in sequence or time steps. .. math:: sum(samples\\_of\\_a\\_sequence)/sqrt(sample\\_num) """ def __init__(self): AvgPooling.__init__(self, AvgPooling.STRATEGY_SQROOTN)