/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include #include #include #include #include #include "gflags/gflags.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/platform/cuda_device_guard.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/flags.h" #include "paddle/fluid/platform/lock_guard_ptr.h" #include "paddle/fluid/platform/macros.h" #include "paddle/fluid/platform/monitor.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/string/split.h" #include "paddle/phi/backends/gpu/gpu_info.h" #ifdef PADDLE_WITH_HIP #include "paddle/fluid/platform/dynload/miopen.h" #else #include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h" #include "paddle/fluid/platform/dynload/cudnn.h" #endif #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 10020 #include "paddle/fluid/platform/dynload/cuda_driver.h" #endif #endif DECLARE_double(fraction_of_gpu_memory_to_use); DECLARE_uint64(initial_gpu_memory_in_mb); DECLARE_uint64(reallocate_gpu_memory_in_mb); DECLARE_bool(enable_cublas_tensor_op_math); DECLARE_uint64(gpu_memory_limit_mb); #ifdef PADDLE_WITH_TESTING PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log, false, "Whether to print the message of gpu memory usage " "at exit, mainly used for UT and CI."); #endif constexpr static float fraction_reserve_gpu_memory = 0.05f; USE_GPU_MEM_STAT; namespace paddle { namespace platform { void GpuMemoryUsage(size_t *available, size_t *total) { size_t actual_available, actual_total; RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total, platform::GetCurrentDeviceId()); } size_t GpuAvailableMemToAlloc() { size_t total = 0; size_t available = 0; GpuMemoryUsage(&available, &total); size_t reserving = static_cast(fraction_reserve_gpu_memory * available); // If available size is less than minimum chunk size, no usable memory exists size_t available_to_alloc = available - reserving; size_t min_chunk_size = GpuMinChunkSize(); if (available_to_alloc < min_chunk_size) { available_to_alloc = 0; } VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20) << "M, " << (available_to_alloc >> 20) << "M available to allocate"; return available_to_alloc; } size_t GpuMaxAllocSize() { return std::max(GpuInitAllocSize(), GpuReallocSize()); } static size_t GpuAllocSize(bool realloc) { size_t available_to_alloc = GpuAvailableMemToAlloc(); PADDLE_ENFORCE_GT( available_to_alloc, 0, platform::errors::ResourceExhausted("Not enough available GPU memory.")); // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be // allocated by fraction size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb : FLAGS_initial_gpu_memory_in_mb; size_t alloc_bytes = (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc * FLAGS_fraction_of_gpu_memory_to_use); PADDLE_ENFORCE_GE( available_to_alloc, alloc_bytes, platform::errors::ResourceExhausted("Not enough available GPU memory.")); VLOG(10) << "Alloc size is " << (alloc_bytes >> 20) << " MiB, is it Re-alloc: " << realloc; return alloc_bytes; } size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); } size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); } size_t GpuMinChunkSize() { // Allow to allocate the minimum chunk size is 256 bytes. return 1 << 8; } size_t GpuMaxChunkSize() { size_t max_chunk_size = GpuMaxAllocSize(); VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M"; return max_chunk_size; } static void RaiseNonOutOfMemoryError(gpuError_t *status) { if (*status == gpuErrorOutOfMemory) { *status = gpuSuccess; } PADDLE_ENFORCE_GPU_SUCCESS(*status); *status = platform::GpuGetLastError(); if (*status == gpuErrorOutOfMemory) { *status = gpuSuccess; } PADDLE_ENFORCE_GPU_SUCCESS(*status); } class RecordedGpuMallocHelper { private: explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0) : dev_id_(dev_id), limit_size_(limit_size) { if (NeedRecord()) { mtx_.reset(new std::mutex()); } #ifdef PADDLE_WITH_TESTING if (FLAGS_enable_gpu_memory_usage_log) { // A fake UPDATE to trigger the construction of memory stat instances, // make sure that they are destructed after RecordedGpuMallocHelper. MEMORY_STAT_UPDATE(Reserved, dev_id, 0); } #endif } DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper); public: ~RecordedGpuMallocHelper() { #ifdef PADDLE_WITH_TESTING if (FLAGS_enable_gpu_memory_usage_log) { std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : " << MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) << std::endl; } #endif } static RecordedGpuMallocHelper *Instance(int dev_id) { static std::vector> instances_; std::call_once(once_flag_, [] { int dev_cnt = GetGPUDeviceCount(); instances_.reserve(dev_cnt); for (int i = 0; i < dev_cnt; ++i) { instances_.emplace_back( new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20)); } }); PADDLE_ENFORCE_GE( dev_id, 0, platform::errors::OutOfRange( "Device id must be not less than 0, but got %d.", dev_id)); PADDLE_ENFORCE_LT( dev_id, instances_.size(), platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.", dev_id, instances_.size())); return instances_[dev_id].get(); } /** * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation * or cudaSuccess would be returned, and the cudaGetLastError() flag * would be clear. */ gpuError_t Malloc(void **ptr, size_t size, bool malloc_managed_memory = false) { LockGuardPtr lock(mtx_); if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) { return gpuErrorOutOfMemory; } CUDADeviceGuard guard(dev_id_); gpuError_t result; #ifdef PADDLE_WITH_HIP if (UNLIKELY(malloc_managed_memory)) { result = hipMallocManaged(ptr, size); } else { result = hipMalloc(ptr, size); } #else CUDAGraphCaptureModeGuard capture_mode_guard; if (UNLIKELY(malloc_managed_memory)) { result = cudaMallocManaged(ptr, size); } else { VLOG(10) << "[cudaMalloc] size=" << static_cast(size) / (1 << 20) << " MB"; result = cudaMalloc(ptr, size); } #endif if (result == gpuSuccess) { cur_size_.fetch_add(size); STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size); MEMORY_STAT_UPDATE(Reserved, dev_id_, size); #ifdef PADDLE_WITH_TESTING gpu_ptrs.insert(*ptr); #endif return gpuSuccess; } else { RaiseNonOutOfMemoryError(&result); // Non out of memory error would be raised inside // RaiseNonOutOfMemoryError. Therefore, we can // return cudaErrorMemoryAllocation directly here. return gpuErrorOutOfMemory; } } /** * Free gpu memory. Usually, free is not allowed to raise error. * If it does raise error, the process should be crashed. */ void Free(void *ptr, size_t size) { // Purposefully allow cudaErrorCudartUnloading, because // that is returned if you ever call cudaFree after the // driver has already shutdown. This happens only if the // process is terminating, in which case we don't care if // cudaFree succeeds. CUDADeviceGuard guard(dev_id_); #ifdef PADDLE_WITH_HIP auto err = hipFree(ptr); if (err != hipErrorDeinitialized) { #else auto err = cudaFree(ptr); VLOG(10) << "[cudaFree] size=" << static_cast(size) / (1 << 20) << " MB"; if (err != cudaErrorCudartUnloading) { #endif PADDLE_ENFORCE_GPU_SUCCESS(err); cur_size_.fetch_sub(size); STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size); MEMORY_STAT_UPDATE(Reserved, dev_id_, -size); } else { platform::GpuGetLastError(); // clear the error flag when // cudaErrorCudartUnloading / // hipErrorDeinitialized } #ifdef PADDLE_WITH_TESTING gpu_ptrs.erase(ptr); #endif } void *GetBasePtr(void *ptr) { #ifdef PADDLE_WITH_TESTING auto it = gpu_ptrs.upper_bound(ptr); if (it == gpu_ptrs.begin()) { return nullptr; } return *(--it); #else PADDLE_THROW(platform::errors::Unimplemented( "The RecordedGpuMallocHelper::GetBasePtr is only implemented with " "testing, should not use for release.")); return nullptr; #endif } bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail, size_t *actual_total) { { CUDADeviceGuard guard(dev_id_); #ifdef PADDLE_WITH_HIP auto result = hipMemGetInfo(actual_avail, actual_total); #else auto result = cudaMemGetInfo(actual_avail, actual_total); #endif if (result != gpuSuccess) { *actual_avail = 0; } RaiseNonOutOfMemoryError(&result); } if (NeedRecord()) { std::lock_guard guard(*mtx_); *avail = std::min(*actual_avail, limit_size_ - cur_size_.load()); *total = std::min(*actual_total, limit_size_); return *total < *actual_total; } else { *avail = *actual_avail; *total = *actual_total; return false; } } inline bool NeedRecord() const { return limit_size_ != 0; } uint64_t RecordedSize() const { return cur_size_.load(); } uint64_t LimitSize() const { return limit_size_; } #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 10020 CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size, const CUmemAllocationProp *prop, unsigned long long flags) { // NOLINT auto result = paddle::platform::dynload::cuMemCreate(handle, size, prop, flags); if (result == CUDA_SUCCESS) { cur_size_.fetch_add(size); } return result; } CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) { auto result = paddle::platform::dynload::cuMemRelease(handle); if (result == CUDA_SUCCESS) { cur_size_.fetch_sub(size); } return result; } #endif #endif private: const int dev_id_; const uint64_t limit_size_; std::atomic cur_size_{0}; mutable std::unique_ptr mtx_; static std::once_flag once_flag_; std::set gpu_ptrs; // just for testing }; // NOLINT std::once_flag RecordedGpuMallocHelper::once_flag_; gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id, bool malloc_managed_memory) { return RecordedGpuMallocHelper::Instance(dev_id)->Malloc( ptr, size, malloc_managed_memory); } void RecordedGpuFree(void *p, size_t size, int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size); } #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 10020 CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size, const CUmemAllocationProp *prop, unsigned long long flags, int dev_id) { // NOLINT return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size, prop, flags); } CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size, int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size); } #endif #endif bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail, size_t *actual_total, int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo( avail, total, actual_avail, actual_total); } uint64_t RecordedGpuMallocSize(int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize(); } uint64_t RecordedGpuLimitSize(int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize(); } bool IsGpuMallocRecorded(int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord(); } void EmptyCache(void) { std::vector devices = GetSelectedDevices(); for (auto device : devices) { memory::Release(CUDAPlace(device)); } } bool IsGPUManagedMemorySupported(int dev_id) { return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id); } bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) { return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported( dev_id); } void *GetGpuBasePtr(void *ptr, int dev_id) { return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr); } int DnnVersion() { return phi::backends::gpu::DnnVersion(); } int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); } int GetGPUComputeCapability(int id) { return phi::backends::gpu::GetGPUComputeCapability(id); } int GetGPURuntimeVersion(int id) { return phi::backends::gpu::GetGPURuntimeVersion(id); } int GetGPUDriverVersion(int id) { return phi::backends::gpu::GetGPUDriverVersion(id); } bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); } int GetGPUMultiProcessors(int id) { return phi::backends::gpu::GetGPUMultiProcessors(id); } int GetGPUMaxThreadsPerMultiProcessor(int id) { return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id); } int GetGPUMaxThreadsPerBlock(int id) { return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id); } int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); } std::array GetGpuMaxGridDimSize(int id) { return phi::backends::gpu::GetGpuMaxGridDimSize(id); } std::vector GetSelectedDevices() { return phi::backends::gpu::GetSelectedDevices(); } const gpuDeviceProp &GetDeviceProperties(int id) { return phi::backends::gpu::GetDeviceProperties(id); } void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); } gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); } void GpuStreamSync(gpuStream_t stream) { phi::backends::gpu::GpuStreamSync(stream); } void GpuDestroyStream(gpuStream_t stream) { phi::backends::gpu::GpuDestroyStream(stream); } void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); } void GpuMemcpyAsync(void *dst, const void *src, size_t count, gpuMemcpyKind kind, gpuStream_t stream) { phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream); } void GpuMemcpySync(void *dst, const void *src, size_t count, gpuMemcpyKind kind) { phi::backends::gpu::GpuMemcpySync(dst, src, count, kind); } void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src, int src_device, size_t count, gpuStream_t stream) { phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream); } void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src, int src_device, size_t count) { phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device, count); } void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) { phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream); } } // namespace platform } // namespace paddle