# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import warnings from ...static import Variable from ...fluid.layer_helper import LayerHelper from ...fluid.data_feeder import check_variable_and_dtype, check_dtype from paddle import _C_ops from paddle import in_dynamic_mode from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode __all__ = [] def one_hot(x, num_classes, name=None): """ The operator converts each id in the input 'x' to an one-hot vector with a num_classes length. The value in the vector dimension corresponding to the id is 1, and the value in the remaining dimension is 0. The shape of output Tensor is generated by appending num_classes dimension behind the last dimension of the 'x' shape. .. code-block:: text Example 1: input: x.shape = [4] x.data = [1, 1, 3, 0] num_classes = 4 output: Out.shape = [4, 4] Out.data = [[0., 1., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.], [1., 0., 0., 0.]] Example 2: input: x.shape = [4] x.data = [1, 1, 5, 0] num_classes = 4 output: Throw an exception for Illegal value The second dimension in X is 5, which is greater than num_classes, so it throws an exception. Args: x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` , which contains at least one dimension. The data type is int32 or int64. num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x' is word id, num_classes is generally the dictionary size. Returns: Tensor: The one-hot representations of 'x'. A Tensor with type float32. Examples: .. code-block:: python import paddle # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4]. label = paddle.to_tensor([1, 1, 3, 0], dtype='int64') # label.shape = [4] one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4) # one_hot_label.shape = [4, 4] # one_hot_label = [[0., 1., 0., 0.], # [0., 1., 0., 0.], # [0., 0., 0., 1.], # [1., 0., 0., 0.]] """ if in_dygraph_mode(): return _C_ops.final_state_one_hot(x, num_classes) else: if _in_legacy_dygraph(): return _C_ops.one_hot_v2(x, 'depth', num_classes, 'allow_out_of_range', False) else: check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2') helper = LayerHelper("one_hot_v2", **locals()) one_hot_out = helper.create_variable_for_type_inference( dtype='float32') if not isinstance(num_classes, Variable): # user attribute inputs = {'X': x} attrs = {'depth': num_classes, 'allow_out_of_range': False} else: num_classes.stop_gradient = True inputs = {'X': x, 'depth_tensor': num_classes} attrs = {'allow_out_of_range': False} helper.append_op( type="one_hot_v2", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}, stop_gradient=True) return one_hot_out def embedding(x, weight, padding_idx=None, sparse=False, name=None): r""" The operator is used to lookup embeddings vector of ids provided by :attr:`x` . The shape of output Tensor is generated by appending the last dimension of the input Tensor shape with embedding size. **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` , otherwise the program will throw an exception and exit. .. code-block:: text Case 1: x is a Tensor. padding_idx = -1 x.data = [[1, 3], [2, 4], [4, 127]] x.shape = [3, 2] weight.shape = [128, 16] output is a Tensor: out.shape = [3, 2, 16] out.data = [[[0.129435295, 0.244512452, ..., 0.436322452], [0.345421456, 0.524563927, ..., 0.144534654]], [[0.345249859, 0.124939536, ..., 0.194353745], [0.945345345, 0.435394634, ..., 0.435345365]], [[0.945345345, 0.435394634, ..., 0.435345365], [0.0, 0.0, ..., 0.0 ]]] # padding data The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127 It will pad all-zero data when id is 127. Args: x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should satisfy :math:`0<= id < weight.shape[0]` . weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which indicates the size of the dictionary of embeddings and the size of each embedding vector respectively. sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizers does not support sparse update, such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`. In these cases, sparse must be False. Default: False. padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]). If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated while training. If set None, it makes no effect to output. Default: None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: Embedding Tensor mapped by x. The data type is the same as :attr:`weight`. Examples: .. code-block:: python import numpy as np import paddle import paddle.nn as nn x0 = np.arange(3, 6).reshape((3, 1)).astype(np.int64) w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32) # x.data = [[3], [4], [5]] # x.shape = [3, 1] x = paddle.to_tensor(x0, stop_gradient=False) # w.data = [[2. 2. 2.] ... [2. 2. 2.]] # w.shape = [10, 3] w = paddle.to_tensor(w0, stop_gradient=False) # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]] # emb.shape = [3, 1, 3] emb = nn.functional.embedding( x=x, weight=w, sparse=True, name="embedding") """ padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( weight.shape[0] + padding_idx) if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]: raise ValueError("padding_idx must be within [-{}, {})".format( weight.shape[0], weight.shape[0])) if in_dygraph_mode(): return _C_ops.final_state_embedding(x, weight, padding_idx, sparse) elif _in_legacy_dygraph(): return _C_ops.lookup_table_v2( weight, x, 'is_sparse', sparse, 'is_distributed', False, 'remote_prefetch', False, 'padding_idx', padding_idx) else: helper = LayerHelper('embedding', **locals()) dtype = helper.input_dtype(input_param_name='weight') check_variable_and_dtype(x, 'input', ['uint8', 'int8', 'int16', 'int32', 'int64'], 'embedding') is_distributed = False remote_prefetch = sparse and (not is_distributed) tmp = helper.create_variable_for_type_inference(dtype) helper.append_op( type='lookup_table_v2', inputs={'Ids': x, 'W': weight}, outputs={'Out': tmp}, attrs={ 'is_sparse': sparse, 'is_distributed': is_distributed, 'remote_prefetch': remote_prefetch, 'padding_idx': padding_idx }) return tmp