# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ """ # from activations import * from activations import LinearActivation, ReluActivation, SoftmaxActivation, \ IdentityActivation, TanhActivation, SequenceSoftmaxActivation from attrs import ExtraAttr from default_decorators import wrap_name_default, wrap_act_default, \ wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default from layers import * # There are too many layers used in network, so import * from poolings import MaxPooling, SumPooling from paddle.trainer.config_parser import * __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', 'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs' ] ###################################################### # Text CNN # ###################################################### @wrap_name_default("sequence_conv_pooling") def sequence_conv_pool(input, context_len, hidden_size, name=None, context_start=None, pool_type=None, context_proj_layer_name=None, context_proj_param_attr=False, fc_layer_name=None, fc_param_attr=None, fc_bias_attr=None, fc_act=None, pool_bias_attr=None, fc_attr=None, context_attr=None, pool_attr=None): """ Text convolution pooling layers helper. Text input => Context Projection => FC Layer => Pooling => Output. :param name: name of output layer(pooling layer name) :type name: basestring :param input: name of input layer :type input: LayerOutput :param context_len: context projection length. See context_projection's document. :type context_len: int :param hidden_size: FC Layer size. :type hidden_size: int :param context_start: context projection length. See context_projection's context_start. :type context_start: int or None :param pool_type: pooling layer type. See pooling_layer's document. :type pool_type: BasePoolingType. :param context_proj_layer_name: context projection layer name. None if user don't care. :type context_proj_layer_name: basestring :param context_proj_param_attr: context projection parameter attribute. None if user don't care. :type context_proj_param_attr: ParameterAttribute or None. :param fc_layer_name: fc layer name. None if user don't care. :type fc_layer_name: basestring :param fc_param_attr: fc layer parameter attribute. None if user don't care. :type fc_param_attr: ParameterAttribute or None :param fc_bias_attr: fc bias parameter attribute. False if no bias, None if user don't care. :type fc_bias_attr: ParameterAttribute or None :param fc_act: fc layer activation type. None means tanh :type fc_act: BaseActivation :param pool_bias_attr: pooling layer bias attr. None if don't care. False if no bias. :type pool_bias_attr: ParameterAttribute or None. :param fc_attr: fc layer extra attribute. :type fc_attr: ExtraLayerAttribute :param context_attr: context projection layer extra attribute. :type context_attr: ExtraLayerAttribute :param pool_attr: pooling layer extra attribute. :type pool_attr: ExtraLayerAttribute :return: output layer name. :rtype: LayerOutput """ # Set Default Value to param context_proj_layer_name = "%s_conv_proj" % name \ if context_proj_layer_name is None else context_proj_layer_name with mixed_layer( name=context_proj_layer_name, size=input.size * context_len, act=LinearActivation(), layer_attr=context_attr) as m: m += context_projection( input, context_len=context_len, context_start=context_start, padding_attr=context_proj_param_attr) fc_layer_name = "%s_conv_fc" % name \ if fc_layer_name is None else fc_layer_name fl = fc_layer( name=fc_layer_name, input=m, size=hidden_size, act=fc_act, layer_attr=fc_attr, param_attr=fc_param_attr, bias_attr=fc_bias_attr) return pooling_layer( name=name, input=fl, pooling_type=pool_type, bias_attr=pool_bias_attr, layer_attr=pool_attr) text_conv_pool = sequence_conv_pool ############################################################################ # Images # ############################################################################ @wrap_name_default("conv_pool") def simple_img_conv_pool(input, filter_size, num_filters, pool_size, name=None, pool_type=None, act=None, groups=1, conv_stride=1, conv_padding=0, bias_attr=None, num_channel=None, param_attr=None, shared_bias=True, conv_layer_attr=None, pool_stride=1, pool_padding=0, pool_layer_attr=None): """ Simple image convolution and pooling group. Input => conv => pooling :param name: group name :type name: basestring :param input: input layer name. :type input: LayerOutput :param filter_size: see img_conv_layer for details :type filter_size: int :param num_filters: see img_conv_layer for details :type num_filters: int :param pool_size: see img_pool_layer for details :type pool_size: int :param pool_type: see img_pool_layer for details :type pool_type: BasePoolingType :param act: see img_conv_layer for details :type act: BaseActivation :param groups: see img_conv_layer for details :type groups: int :param conv_stride: see img_conv_layer for details :type conv_stride: int :param conv_padding: see img_conv_layer for details :type conv_padding: int :param bias_attr: see img_conv_layer for details :type bias_attr: ParameterAttribute :param num_channel: see img_conv_layer for details :type num_channel: int :param param_attr: see img_conv_layer for details :type param_attr: ParameterAttribute :param shared_bias: see img_conv_layer for details :type shared_bias: bool :param conv_layer_attr: see img_conv_layer for details :type conv_layer_attr: ExtraLayerAttribute :param pool_stride: see img_pool_layer for details :type pool_stride: int :param pool_padding: see img_pool_layer for details :type pool_padding: int :param pool_layer_attr: see img_pool_layer for details :type pool_layer_attr: ExtraLayerAttribute :return: Layer's output :rtype: LayerOutput """ _conv_ = img_conv_layer( name="%s_conv" % name, input=input, filter_size=filter_size, num_filters=num_filters, num_channels=num_channel, act=act, groups=groups, stride=conv_stride, padding=conv_padding, bias_attr=bias_attr, param_attr=param_attr, shared_biases=shared_bias, layer_attr=conv_layer_attr) return img_pool_layer( name="%s_pool" % name, input=_conv_, pool_size=pool_size, pool_type=pool_type, stride=pool_stride, padding=pool_padding, layer_attr=pool_layer_attr) @wrap_name_default("conv_bn_pool") def img_conv_bn_pool(input, filter_size, num_filters, pool_size, name=None, pool_type=None, act=None, groups=1, conv_stride=1, conv_padding=0, conv_bias_attr=None, num_channel=None, conv_param_attr=None, shared_bias=True, conv_layer_attr=None, bn_param_attr=None, bn_bias_attr=None, bn_layer_attr=None, pool_stride=1, pool_padding=0, pool_layer_attr=None): """ Convolution, batch normalization, pooling group. :param name: group name :type name: basestring :param input: layer's input :type input: LayerOutput :param filter_size: see img_conv_layer's document :type filter_size: int :param num_filters: see img_conv_layer's document :type num_filters: int :param pool_size: see img_pool_layer's document. :type pool_size: int :param pool_type: see img_pool_layer's document. :type pool_type: BasePoolingType :param act: see batch_norm_layer's document. :type act: BaseActivation :param groups: see img_conv_layer's document :type groups: int :param conv_stride: see img_conv_layer's document. :type conv_stride: int :param conv_padding: see img_conv_layer's document. :type conv_padding: int :param conv_bias_attr: see img_conv_layer's document. :type conv_bias_attr: ParameterAttribute :param num_channel: see img_conv_layer's document. :type num_channel: int :param conv_param_attr: see img_conv_layer's document. :type conv_param_attr: ParameterAttribute :param shared_bias: see img_conv_layer's document. :type shared_bias: bool :param conv_layer_attr: see img_conv_layer's document. :type conv_layer_attr: ExtraLayerOutput :param bn_param_attr: see batch_norm_layer's document. :type bn_param_attr: ParameterAttribute. :param bn_bias_attr: see batch_norm_layer's document. :param bn_layer_attr: ParameterAttribute. :param pool_stride: see img_pool_layer's document. :type pool_stride: int :param pool_padding: see img_pool_layer's document. :type pool_padding: int :param pool_layer_attr: see img_pool_layer's document. :type pool_layer_attr: ExtraLayerAttribute :return: Layer groups output :rtype: LayerOutput """ __conv__ = img_conv_layer( name="%s_conv" % name, input=input, filter_size=filter_size, num_filters=num_filters, num_channels=num_channel, act=LinearActivation(), groups=groups, stride=conv_stride, padding=conv_padding, bias_attr=conv_bias_attr, param_attr=conv_param_attr, shared_biases=shared_bias, layer_attr=conv_layer_attr) __bn__ = batch_norm_layer( name="%s_bn" % name, input=__conv__, act=act, bias_attr=bn_bias_attr, param_attr=bn_param_attr, layer_attr=bn_layer_attr) return img_pool_layer( name="%s_pool" % name, input=__bn__, pool_type=pool_type, pool_size=pool_size, stride=pool_stride, padding=pool_padding, layer_attr=pool_layer_attr) @wrap_act_default(param_names=['conv_act'], act=ReluActivation()) @wrap_param_default( param_names=['pool_type'], default_factory=lambda _: MaxPooling()) def img_conv_group(input, conv_num_filter, pool_size, num_channels=None, conv_padding=1, conv_filter_size=3, conv_act=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=0, pool_stride=1, pool_type=None): """ Image Convolution Group, Used for vgg net. TODO(yuyang18): Complete docs :param conv_batchnorm_drop_rate: :param input: :param conv_num_filter: :param pool_size: :param num_channels: :param conv_padding: :param conv_filter_size: :param conv_act: :param conv_with_batchnorm: :param pool_stride: :param pool_type: :return: """ tmp = input # Type checks assert isinstance(tmp, LayerOutput) assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter, tuple) for each_num_filter in conv_num_filter: assert isinstance(each_num_filter, int) assert isinstance(pool_size, int) def __extend_list__(obj): if not hasattr(obj, '__len__'): return [obj] * len(conv_num_filter) else: return obj conv_padding = __extend_list__(conv_padding) conv_filter_size = __extend_list__(conv_filter_size) conv_act = __extend_list__(conv_act) conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) for i in xrange(len(conv_num_filter)): extra_kwargs = dict() if num_channels is not None: extra_kwargs['num_channels'] = num_channels num_channels = None if conv_with_batchnorm[i]: extra_kwargs['act'] = LinearActivation() else: extra_kwargs['act'] = conv_act[i] tmp = img_conv_layer( input=tmp, padding=conv_padding[i], filter_size=conv_filter_size[i], num_filters=conv_num_filter[i], **extra_kwargs) # logger.debug("tmp.num_filters = %d" % tmp.num_filters) if conv_with_batchnorm[i]: dropout = conv_batchnorm_drop_rate[i] if dropout == 0 or abs(dropout) < 1e-5: # dropout not set tmp = batch_norm_layer(input=tmp, act=conv_act[i]) else: tmp = batch_norm_layer( input=tmp, act=conv_act[i], layer_attr=ExtraAttr(drop_rate=dropout)) return img_pool_layer( input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type) def small_vgg(input_image, num_channels, num_classes): def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None): return img_conv_group( input=ipt, num_channels=num_channels_, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * times, conv_filter_size=3, conv_act=ReluActivation(), conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type=MaxPooling()) tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels) tmp = __vgg__(tmp, 128, 2, [0.4, 0]) tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0]) tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0]) tmp = img_pool_layer( input=tmp, stride=2, pool_size=2, pool_type=MaxPooling()) tmp = dropout_layer(input=tmp, dropout_rate=0.5) tmp = fc_layer( input=tmp, size=512, layer_attr=ExtraAttr(drop_rate=0.5), act=LinearActivation()) tmp = batch_norm_layer(input=tmp, act=ReluActivation()) return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation()) def vgg_16_network(input_image, num_channels, num_classes=1000): """ Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8 :param num_classes: :param input_image: :type input_image: LayerOutput :param num_channels: :type num_channels: int :return: """ tmp = img_conv_group( input=input_image, num_channels=num_channels, conv_padding=1, conv_num_filter=[64, 64], conv_filter_size=3, conv_act=ReluActivation(), pool_size=2, pool_stride=2, pool_type=MaxPooling()) tmp = img_conv_group( input=tmp, conv_num_filter=[128, 128], conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = img_conv_group( input=tmp, conv_num_filter=[256, 256, 256], conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = img_conv_group( input=tmp, conv_num_filter=[512, 512, 512], conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = img_conv_group( input=tmp, conv_num_filter=[512, 512, 512], conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = fc_layer( input=tmp, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) tmp = fc_layer( input=tmp, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation()) ############################################################################ # Recurrent # ############################################################################ @wrap_name_default("lstm") def simple_lstm(input, size, name=None, reverse=False, mat_param_attr=None, bias_param_attr=None, inner_param_attr=None, act=None, gate_act=None, state_act=None, mixed_layer_attr=None, lstm_cell_attr=None): """ Simple LSTM Cell. It just combine a mixed layer with fully_matrix_projection and a lstmemory layer. The simple lstm cell was implemented as follow equations. .. math:: i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c) o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o) h_t & = o_t tanh(c_t) Please refer **Generating Sequences With Recurrent Neural Networks** if you want to know what lstm is. Link_ is here. .. _Link: http://arxiv.org/abs/1308.0850 :param name: lstm layer name. :type name: basestring :param input: input layer name. :type input: LayerOutput :param size: lstm layer size. :type size: int :param reverse: whether to process the input data in a reverse order :type reverse: bool :param mat_param_attr: mixed layer's matrix projection parameter attribute. :type mat_param_attr: ParameterAttribute :param bias_param_attr: bias parameter attribute. False means no bias, None means default bias. :type bias_param_attr: ParameterAttribute|False :param inner_param_attr: lstm cell parameter attribute. :type inner_param_attr: ParameterAttribute :param act: lstm final activiation type :type act: BaseActivation :param gate_act: lstm gate activiation type :type gate_act: BaseActivation :param state_act: lstm state activiation type. :type state_act: BaseActivation :param mixed_layer_attr: mixed layer's extra attribute. :type mixed_layer_attr: ExtraLayerAttribute :param lstm_cell_attr: lstm layer's extra attribute. :type lstm_cell_attr: ExtraLayerAttribute :return: lstm layer name. :rtype: LayerOutput """ fc_name = 'lstm_transform_%s' % name with mixed_layer( name=fc_name, size=size * 4, act=IdentityActivation(), layer_attr=mixed_layer_attr, bias_attr=False) as m: m += full_matrix_projection(input, param_attr=mat_param_attr) return lstmemory( name=name, input=m, reverse=reverse, bias_attr=bias_param_attr, param_attr=inner_param_attr, act=act, gate_act=gate_act, state_act=state_act, layer_attr=lstm_cell_attr) @wrap_name_default('lstm_unit') def lstmemory_unit(input, memory_boot=None, name=None, size=None, param_attr=None, act=None, gate_act=None, state_act=None, mixed_bias_attr=None, lstm_bias_attr=None, mixed_layer_attr=None, lstm_layer_attr=None, get_output_layer_attr=None): """ Define calculations that a LSTM unit performs during a single time step. This function itself is not a recurrent layer, so it can not be directly used to process sequence inputs. This function is always used in recurrent_group (see layers.py for more details) to implement attention mechanism. Please refer to **Generating Sequences With Recurrent Neural Networks** for more details about LSTM. The link goes as follows: .. _Link: https://arxiv.org/abs/1308.0850 .. math:: i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i) f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c) o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o) h_t & = o_t tanh(c_t) The example usage is: .. code-block:: python lstm_step = lstmemory_unit(input=[layer1], size=256, act=TanhActivation(), gate_act=SigmoidActivation(), state_act=TanhActivation()) :param input: input layer name. :type input: LayerOutput :param memory_boot: the initialization state of the LSTM cell. :type memory_boot: LayerOutput | None :param name: lstmemory unit name. :type name: basestring :param size: lstmemory unit size. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :param act: lstm final activiation type :type act: BaseActivation :param gate_act: lstm gate activiation type :type gate_act: BaseActivation :param state_act: lstm state activiation type. :type state_act: BaseActivation :param mixed_bias_attr: bias parameter attribute of mixed layer. False means no bias, None means default bias. :type mixed_bias_attr: ParameterAttribute|False :param lstm_bias_attr: bias parameter attribute of lstm layer. False means no bias, None means default bias. :type lstm_bias_attr: ParameterAttribute|False :param mixed_layer_attr: mixed layer's extra attribute. :type mixed_layer_attr: ExtraLayerAttribute :param lstm_layer_attr: lstm layer's extra attribute. :type lstm_layer_attr: ExtraLayerAttribute :param get_output_layer_attr: get output layer's extra attribute. :type get_output_layer_attr: ExtraLayerAttribute :return: lstmemory unit name. :rtype: LayerOutput """ if size is None: assert input.size % 4 == 0 size = input.size / 4 out_mem = memory(name=name, size=size) state_mem = memory( name="%s_state" % name, size=size, boot_layer=memory_boot) with mixed_layer( name="%s_input_recurrent" % name, size=size * 4, bias_attr=mixed_bias_attr, layer_attr=mixed_layer_attr, act=IdentityActivation()) as m: m += identity_projection(input=input) m += full_matrix_projection(input=out_mem, param_attr=param_attr) lstm_out = lstm_step_layer( name=name, input=m, state=state_mem, size=size, bias_attr=lstm_bias_attr, act=act, gate_act=gate_act, state_act=state_act, layer_attr=lstm_layer_attr) get_output_layer( name='%s_state' % name, input=lstm_out, arg_name='state', layer_attr=get_output_layer_attr) return lstm_out @wrap_name_default('lstm_group') def lstmemory_group(input, size=None, name=None, memory_boot=None, reverse=False, param_attr=None, act=None, gate_act=None, state_act=None, mixed_bias_attr=None, lstm_bias_attr=None, mixed_layer_attr=None, lstm_layer_attr=None, get_output_layer_attr=None): """ lstm_group is a recurrent_group version of Long Short Term Memory. It does exactly the same calculation as the lstmemory layer (see lstmemory in layers.py for the maths) does. A promising benefit is that LSTM memory cell states, or hidden states in every time step are accessible to the user. This is especially useful in attention model. If you do not need to access the internal states of the lstm, but merely use its outputs, it is recommended to use the lstmemory, which is relatively faster than lstmemory_group. NOTE: In PaddlePaddle's implementation, the following input-to-hidden multiplications: :math:`W_{x_i}x_{t}` , :math:`W_{x_f}x_{t}`, :math:`W_{x_c}x_t`, :math:`W_{x_o}x_{t}` are not done in lstmemory_unit to speed up the calculations. Consequently, an additional mixed_layer with full_matrix_projection must be included before lstmemory_unit is called. The example usage is: .. code-block:: python lstm_step = lstmemory_group(input=[layer1], size=256, act=TanhActivation(), gate_act=SigmoidActivation(), state_act=TanhActivation()) :param input: input layer name. :type input: LayerOutput :param size: lstmemory group size. :type size: int :param name: name of the lstmemory group. :type name: basestring :param memory_boot: the initialization state of LSTM cell. :type memory_boot: LayerOutput | None :param reverse: is lstm reversed :type reverse: bool :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :param act: lstm final activiation type :type act: BaseActivation :param gate_act: lstm gate activiation type :type gate_act: BaseActivation :param state_act: lstm state activiation type. :type state_act: BaseActivation :param mixed_bias_attr: bias parameter attribute of mixed layer. False means no bias, None means default bias. :type mixed_bias_attr: ParameterAttribute|False :param lstm_bias_attr: bias parameter attribute of lstm layer. False means no bias, None means default bias. :type lstm_bias_attr: ParameterAttribute|False :param mixed_layer_attr: mixed layer's extra attribute. :type mixed_layer_attr: ExtraLayerAttribute :param lstm_layer_attr: lstm layer's extra attribute. :type lstm_layer_attr: ExtraLayerAttribute :param get_output_layer_attr: get output layer's extra attribute. :type get_output_layer_attr: ExtraLayerAttribute :return: the lstmemory group. :rtype: LayerOutput """ def __lstm_step__(ipt): return lstmemory_unit( input=ipt, memory_boot=memory_boot, name=name, size=size, mixed_bias_attr=mixed_bias_attr, mixed_layer_attr=mixed_layer_attr, param_attr=param_attr, lstm_bias_attr=lstm_bias_attr, act=act, gate_act=gate_act, state_act=state_act, lstm_layer_attr=lstm_layer_attr, get_output_layer_attr=get_output_layer_attr) return recurrent_group( name='%s_recurrent_group' % name, step=__lstm_step__, reverse=reverse, input=input) @wrap_name_default('gru_unit') def gru_unit(input, memory_boot=None, size=None, name=None, gru_bias_attr=None, gru_param_attr=None, act=None, gate_act=None, gru_layer_attr=None, naive=False): """ Define calculations that a gated recurrent unit performs in a single time step. This function itself is not a recurrent layer, so it can not be directly used to process sequence inputs. This function is always used in the recurrent_group (see layers.py for more details) to implement attention mechanism. Please see grumemory in layers.py for the details about the maths. :param input: input layer name. :type input: LayerOutput :param memory_boot: the initialization state of the LSTM cell. :type memory_boot: LayerOutput | None :param name: name of the gru group. :type name: basestring :param size: hidden size of the gru. :type size: int :param act: type of the activation :type act: BaseActivation :param gate_act: type of the gate activation :type gate_act: BaseActivation :param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_layer_attr: ParameterAttribute|False :return: the gru output layer. :rtype: LayerOutput """ assert input.size % 3 == 0 if size is None: size = input.size / 3 out_mem = memory(name=name, size=size, boot_layer=memory_boot) if naive: __step__ = gru_step_naive_layer else: __step__ = gru_step_layer gru_out = __step__( name=name, input=input, output_mem=out_mem, size=size, bias_attr=gru_bias_attr, param_attr=gru_param_attr, act=act, gate_act=gate_act, layer_attr=gru_layer_attr) return gru_out @wrap_name_default('gru_group') def gru_group(input, memory_boot=None, size=None, name=None, reverse=False, gru_bias_attr=None, gru_param_attr=None, act=None, gate_act=None, gru_layer_attr=None, naive=False): """ gru_group is a recurrent_group version of Gated Recurrent Unit. It does exactly the same calculation as the grumemory layer does. A promising benefit is that gru hidden states are accessible to the user. This is especially useful in attention model. If you do not need to access any internal state, but merely use the outputs of a GRU, it is recommended to use the grumemory, which is relatively faster. Please see grumemory in layers.py for more detail about the maths. The example usage is: .. code-block:: python gru = gur_group(input=[layer1], size=256, act=TanhActivation(), gate_act=SigmoidActivation()) :param input: input layer name. :type input: LayerOutput :param memory_boot: the initialization state of the LSTM cell. :type memory_boot: LayerOutput | None :param name: name of the gru group. :type name: basestring :param size: hidden size of the gru. :type size: int :param reverse: whether to process the input data in a reverse order :type reverse: bool :param act: type of the activiation :type act: BaseActivation :param gate_act: type of the gate activiation :type gate_act: BaseActivation :param gru_bias_attr: bias. False means no bias, None means default bias. :type gru_bias_attr: ParameterAttribute|False :param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_layer_attr: ParameterAttribute|False :return: the gru group. :rtype: LayerOutput """ def __gru_step__(ipt): return gru_unit( input=ipt, memory_boot=memory_boot, name=name, size=size, gru_bias_attr=gru_bias_attr, gru_param_attr=gru_param_attr, act=act, gate_act=gate_act, gru_layer_attr=gru_layer_attr, naive=naive) return recurrent_group( name='%s_recurrent_group' % name, step=__gru_step__, reverse=reverse, input=input) @wrap_name_default('simple_gru') def simple_gru(input, size, name=None, reverse=False, mixed_param_attr=None, mixed_bias_param_attr=None, mixed_layer_attr=None, gru_bias_attr=None, gru_param_attr=None, act=None, gate_act=None, gru_layer_attr=None, naive=False): """ You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group, simple_gru in network.py. The reason why there are so many interfaces is that we have two ways to implement recurrent neural network. One way is to use one complete layer to implement rnn (including simple rnn, gru and lstm) with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But, the multiplication operation :math:`W x_t` is not computed in these layers. See details in their interfaces in layers.py. The other implementation is to use an recurrent group which can ensemble a series of layers to compute rnn step by step. This way is flexible for attenion mechanism or other complex connections. - gru_step_layer: only compute rnn by one step. It needs an memory as input and can be used in recurrent group. - gru_unit: a wrapper of gru_step_layer with memory. - gru_group: a GRU cell implemented by a combination of multiple layers in recurrent group. But :math:`W x_t` is not done in group. - gru_memory: a GRU cell implemented by one layer, which does same calculation with gru_group and is faster than gru_group. - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see formula in grumemory. The computational speed is that, grumemory is relatively better than gru_group, and gru_group is relatively better than simple_gru. The example usage is: .. code-block:: python gru = simple_gru(input=[layer1], size=256) :param input: input layer name. :type input: LayerOutput :param name: name of the gru group. :type name: basestring :param size: hidden size of the gru. :type size: int :param reverse: whether to process the input data in a reverse order :type reverse: bool :param act: type of the activiation :type act: BaseActivation :param gate_act: type of the gate activiation :type gate_act: BaseActivation :param gru_bias_attr: bias. False means no bias, None means default bias. :type gru_bias_attr: ParameterAttribute|False :param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_layer_attr: ParameterAttribute|False :return: the gru group. :rtype: LayerOutput """ with mixed_layer( name='%s_transform' % name, size=size * 3, bias_attr=mixed_bias_param_attr, layer_attr=mixed_layer_attr) as m: m += full_matrix_projection(input=input, param_attr=mixed_param_attr) return gru_group( name=name, size=size, input=m, reverse=reverse, gru_bias_attr=gru_bias_attr, gru_param_attr=gru_param_attr, act=act, gate_act=gate_act, gru_layer_attr=gru_layer_attr, naive=naive) @wrap_name_default('simple_gru2') def simple_gru2(input, size, name=None, reverse=False, mixed_param_attr=None, mixed_bias_attr=None, gru_param_attr=None, gru_bias_attr=None, act=None, gate_act=None, mixed_layer_attr=None, gru_cell_attr=None): """ simple_gru2 is the same with simple_gru, but using grumemory instead Please see grumemory in layers.py for more detail about the maths. simple_gru2 is faster than simple_gru. The example usage is: .. code-block:: python gru = simple_gru2(input=[layer1], size=256) :param input: input layer name. :type input: LayerOutput :param name: name of the gru group. :type name: basestring :param size: hidden size of the gru. :type size: int :param reverse: whether to process the input data in a reverse order :type reverse: bool :param act: type of the activiation :type act: BaseActivation :param gate_act: type of the gate activiation :type gate_act: BaseActivation :param gru_bias_attr: bias. False means no bias, None means default bias. :type gru_bias_attr: ParameterAttribute|False :param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_layer_attr: ParameterAttribute|False :return: the gru group. :rtype: LayerOutput """ with mixed_layer( name='%s_transform' % name, size=size * 3, bias_attr=mixed_bias_attr, layer_attr=mixed_layer_attr) as m: m += full_matrix_projection(input=input, param_attr=mixed_param_attr) return grumemory( name=name, input=m, reverse=reverse, bias_attr=gru_bias_attr, param_attr=gru_param_attr, act=act, gate_act=gate_act, layer_attr=gru_cell_attr) @wrap_name_default("bidirectional_gru") def bidirectional_gru(input, size, name=None, return_seq=False, fwd_mixed_param_attr=None, fwd_mixed_bias_attr=None, fwd_gru_param_attr=None, fwd_gru_bias_attr=None, fwd_act=None, fwd_gate_act=None, fwd_mixed_layer_attr=None, fwd_gru_cell_attr=None, bwd_mixed_param_attr=None, bwd_mixed_bias_attr=None, bwd_gru_param_attr=None, bwd_gru_bias_attr=None, bwd_act=None, bwd_gate_act=None, bwd_mixed_layer_attr=None, bwd_gru_cell_attr=None, last_seq_attr=None, first_seq_attr=None, concat_attr=None, concat_act=None): """ A bidirectional_gru is a recurrent unit that iterates over the input sequence both in forward and bardward orders, and then concatenate two outputs to form a final output. However, concatenation of two outputs is not the only way to form the final output, you can also, for example, just add them together. The example usage is: .. code-block:: python bi_gru = bidirectional_gru(input=[input1], size=512) :param name: bidirectional gru layer name. :type name: basestring :param input: input layer. :type input: LayerOutput :param size: gru layer size. :type size: int :param return_seq: If set False, outputs of the last time step are concatenated and returned. If set True, the entire output sequences that are processed in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object. :rtype: LayerOutput """ args = locals() fw = simple_gru2( name='%s_fw' % name, input=input, size=size, **dict((k[len('fwd_'):], v) for k, v in args.iteritems() if k.startswith('fwd_'))) bw = simple_gru2( name="%s_bw" % name, input=input, size=size, reverse=True, **dict((k[len('bwd_'):], v) for k, v in args.iteritems() if k.startswith('bwd_'))) if return_seq: return concat_layer( name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act) else: fw_seq = last_seq( name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr) bw_seq = first_seq( name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr) return concat_layer( name=name, input=[fw_seq, bw_seq], layer_attr=concat_attr, act=concat_act) @wrap_name_default("bidirectional_lstm") def bidirectional_lstm(input, size, name=None, return_seq=False, fwd_mat_param_attr=None, fwd_bias_param_attr=None, fwd_inner_param_attr=None, fwd_act=None, fwd_gate_act=None, fwd_state_act=None, fwd_mixed_layer_attr=None, fwd_lstm_cell_attr=None, bwd_mat_param_attr=None, bwd_bias_param_attr=None, bwd_inner_param_attr=None, bwd_act=None, bwd_gate_act=None, bwd_state_act=None, bwd_mixed_layer_attr=None, bwd_lstm_cell_attr=None, last_seq_attr=None, first_seq_attr=None, concat_attr=None, concat_act=None): """ A bidirectional_lstm is a recurrent unit that iterates over the input sequence both in forward and bardward orders, and then concatenate two outputs form a final output. However, concatenation of two outputs is not the only way to form the final output, you can also, for example, just add them together. Please refer to **Neural Machine Translation by Jointly Learning to Align and Translate** for more details about the bidirectional lstm. The link goes as follows: .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf The example usage is: .. code-block:: python bi_lstm = bidirectional_lstm(input=[input1], size=512) :param name: bidirectional lstm layer name. :type name: basestring :param input: input layer. :type input: LayerOutput :param size: lstm layer size. :type size: int :param return_seq: If set False, outputs of the last time step are concatenated and returned. If set True, the entire output sequences that are processed in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object accroding to the return_seq. :rtype: LayerOutput """ args = locals() fw = simple_lstm( name='%s_fw' % name, input=input, size=size, **dict((k[len('fwd_'):], v) for k, v in args.iteritems() if k.startswith('fwd_'))) bw = simple_lstm( name="%s_bw" % name, input=input, size=size, reverse=True, **dict((k[len('bwd_'):], v) for k, v in args.iteritems() if k.startswith('bwd_'))) if return_seq: return concat_layer( name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act) else: fw_seq = last_seq( name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr) bw_seq = first_seq( name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr) return concat_layer( name=name, input=[fw_seq, bw_seq], layer_attr=concat_attr, act=concat_act) @wrap_name_default() @wrap_act_default(param_names=['weight_act'], act=TanhActivation()) def simple_attention(encoded_sequence, encoded_proj, decoder_state, transform_param_attr=None, softmax_param_attr=None, weight_act=None, name=None): """ Calculate and then return a context vector by attention machanism. Size of the context vector equals to size of the encoded_sequence. .. math:: a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j}) e_{i,j} & = a(s_{i-1}, h_{j}) a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}} c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j} where :math:`h_{j}` is the jth element of encoded_sequence, :math:`U_{a}h_{j}` is the jth element of encoded_proj :math:`s_{i-1}` is decoder_state :math:`f` is weight_act, and is set to tanh by default. Please refer to **Neural Machine Translation by Jointly Learning to Align and Translate** for more details. The link is as follows: https://arxiv.org/abs/1409.0473. The example usage is: .. code-block:: python context = simple_attention(encoded_sequence=enc_seq, encoded_proj=enc_proj, decoder_state=decoder_prev,) :param name: name of the attention model. :type name: basestring :param softmax_param_attr: parameter attribute of sequence softmax that is used to produce attention weight :type softmax_param_attr: ParameterAttribute :param weight_act: activation of the attention model :type weight_act: Activation :param encoded_sequence: output of the encoder :type encoded_sequence: LayerOutput :param encoded_proj: attention weight is computed by a feed forward neural network which has two inputs : decoder's hidden state of previous time step and encoder's output. encoded_proj is output of the feed-forward network for encoder's output. Here we pre-compute it outside simple_attention for speed consideration. :type encoded_proj: LayerOutput :param decoder_state: hidden state of decoder in previous time step :type decoder_state: LayerOutput :param transform_param_attr: parameter attribute of the feed-forward network that takes decoder_state as inputs to compute attention weight. :type transform_param_attr: ParameterAttribute :return: a context vector """ assert encoded_proj.size == decoder_state.size proj_size = encoded_proj.size with mixed_layer(size=proj_size, name="%s_transform" % name) as m: m += full_matrix_projection( decoder_state, param_attr=transform_param_attr) expanded = expand_layer( input=m, expand_as=encoded_sequence, name='%s_expand' % name) with mixed_layer( size=proj_size, act=weight_act, name="%s_combine" % name) as m: m += identity_projection(expanded) m += identity_projection(encoded_proj) # sequence softmax is used to normalize similarities between decoder state # and encoder outputs into a distribution attention_weight = fc_layer( input=m, size=1, act=SequenceSoftmaxActivation(), param_attr=softmax_param_attr, name="%s_softmax" % name, bias_attr=False) scaled = scaling_layer( weight=attention_weight, input=encoded_sequence, name='%s_scaling' % name) return pooling_layer( input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) def inputs(layers, *args): """ Declare the inputs of network. The order of input should be as same as the data provider's return order. :param layers: Input Layers. :type layers: list|tuple|LayerOutput. :return: """ if isinstance(layers, LayerOutput) or isinstance(layers, basestring): layers = [layers] if len(args) != 0: layers.extend(args) Inputs(* [l.name for l in layers]) def outputs(layers, *args): """ Declare the outputs of network. If user have not defined the inputs of network, this method will calculate the input order by dfs travel. :param layers: Output layers. :type layers: list|tuple|LayerOutput :return: """ def __dfs_travel__(layer, predicate=lambda x: x.layer_type == LayerType.DATA): """ DFS LRV Travel for output layer. The return order is define order for data_layer in this leaf node. :param layer: :type layer: LayerOutput :return: """ assert isinstance(layer, LayerOutput), "layer is %s" % (layer) retv = [] if layer.parents is not None: for p in layer.parents: retv.extend(__dfs_travel__(p, predicate)) if predicate(layer): retv.append(layer) return retv if isinstance(layers, LayerOutput): layers = [layers] if len(args) != 0: layers.extend(args) assert len(layers) > 0 if HasInputsSet(): # input already set Outputs(* [l.name for l in layers]) return # just return outputs. if len(layers) != 1: logger.warning("`outputs` routine try to calculate network's" " inputs and outputs order. It might not work well." "Please see follow log carefully.") inputs = [] outputs_ = [] for each_layer in layers: assert isinstance(each_layer, LayerOutput) inputs.extend(__dfs_travel__(each_layer)) outputs_.extend( __dfs_travel__(each_layer, lambda x: x.layer_type == LayerType.COST)) # Currently, we got each leaf node's inputs order, output order. # We merge them together. final_inputs = [] final_outputs = [] for each_input in inputs: assert isinstance(each_input, LayerOutput) if each_input.name not in final_inputs: final_inputs.append(each_input.name) for each_output in outputs_: assert isinstance(each_output, LayerOutput) if each_output.name not in final_outputs: final_outputs.append(each_output.name) logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"])) if len(final_outputs) == 0: final_outputs = map(lambda x: x.name, layers) logger.info("".join( ["The output order is [", ", ".join(final_outputs), "]"])) Inputs(*final_inputs) Outputs(*final_outputs)