// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launcher.h" #include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h" #include "paddle/infrt/kernel/phi/infershaped/infershaped_utils.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/common/place.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/meta_tensor.h" namespace infrt { namespace kernel { namespace { static void ElementwiseAddTest(const ::phi::DenseTensor& a, const ::phi::DenseTensor& b, ::phi::DenseTensor* c); } TEST(utils, registry) { constexpr uint8_t count = InferShapeHelper::count; CHECK_EQ(count, 2U); } class FancyAllocator : public phi::Allocator { public: static void Delete(phi::Allocation* allocation) { ::operator delete(allocation->ptr()); } AllocationPtr Allocate(size_t bytes_size) override { void* data = ::operator new(bytes_size); auto* allocation = new phi::Allocation(data, bytes_size, phi::CPUPlace()); return AllocationPtr(allocation, Delete); } }; TEST(ElementwiseAdd, launcher_registry) { host_context::KernelRegistry registry; RegisterInferShapeLaunchers(®istry); ASSERT_GE(registry.size(), 1UL); auto creator = registry.GetKernel("pten.add.cpu.any.fp32"); const phi::DDim dims({1, 2}); const phi::DataType dtype{phi::DataType::FLOAT32}; const phi::DataLayout layout{phi::DataLayout::NHWC}; const phi::LoD lod{}; phi::DenseTensorMeta meta(dtype, dims, layout, lod); auto fancy_allocator = std::unique_ptr(new FancyAllocator); auto* alloc = fancy_allocator.get(); phi::DenseTensor a(alloc, meta); phi::DenseTensor b(alloc, meta); phi::DenseTensor c(alloc, meta); auto place = phi::CPUPlace(); float* a_data = a.mutable_data(place); float* b_data = b.mutable_data(place); float* c_data = c.mutable_data(place); for (size_t i = 0; i < 2; ++i) { a_data[i] = 1.f; b_data[i] = 2.f; } phi::CPUContext context; context.SetAllocator(alloc); context.Init(); host_context::KernelFrameBuilder kernel_frame_builder; kernel_frame_builder.AddArgument(new host_context::Value(std::move(context))); kernel_frame_builder.AddArgument(new host_context::Value(std::move(a))); kernel_frame_builder.AddArgument(new host_context::Value(std::move(b))); kernel_frame_builder.SetResults({new host_context::Value(std::move(c))}); creator(&kernel_frame_builder); for (size_t i = 0; i < 2; ++i) { CHECK_EQ(c_data[i], 3.f); } } } // namespace kernel } // namespace infrt