/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/full_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" namespace phi { template struct FullFuctor { OutT value; template explicit inline FullFuctor(VType val) { value = static_cast(val); } __device__ __forceinline__ OutT operator()() const { return static_cast(value); } }; template void CooFullLikeKernel(const Context& dev_ctx, const SparseCooTensor& x, const Scalar& val, DataType dtype, SparseCooTensor* out) { phi::Copy(dev_ctx, x.non_zero_indices(), dev_ctx.GetPlace(), false, out->mutable_non_zero_indices()); DenseTensor* values = out->mutable_non_zero_elements(); values->Resize(x.non_zero_elements().dims()); dev_ctx.template Alloc(values); std::vector inputs = {}; std::vector outputs = {values}; int numel = values->numel(); if (numel > 0) { phi::funcs::ElementwiseKernel( dev_ctx, inputs, &outputs, FullFuctor(val.to())); } out->set_dims(x.dims()); } template void CsrFullLikeKernel(const Context& dev_ctx, const SparseCsrTensor& x, const Scalar& val, DataType dtype, SparseCsrTensor* out) { phi::Copy(dev_ctx, x.non_zero_crows(), dev_ctx.GetPlace(), false, out->mutable_non_zero_crows()); phi::Copy(dev_ctx, x.non_zero_cols(), dev_ctx.GetPlace(), false, out->mutable_non_zero_cols()); DenseTensor* values = out->mutable_non_zero_elements(); values->Resize(x.non_zero_elements().dims()); dev_ctx.template Alloc(values); std::vector inputs = {}; std::vector outputs = {values}; int numel = values->numel(); if (numel > 0) { phi::funcs::ElementwiseKernel( dev_ctx, inputs, &outputs, FullFuctor(val.to())); } out->set_dims(x.dims()); } } // namespace phi PD_REGISTER_KERNEL(coo_full_like, GPU, ALL_LAYOUT, phi::CooFullLikeKernel, float, double, uint8_t, int16_t, int, int64_t, bool, phi::dtype::bfloat16, phi::dtype::float16, phi::dtype::complex, phi::dtype::complex) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); } PD_REGISTER_KERNEL(csr_full_like, GPU, ALL_LAYOUT, phi::CsrFullLikeKernel, float, double, uint8_t, int16_t, int, int64_t, bool, phi::dtype::bfloat16, phi::dtype::float16, phi::dtype::complex, phi::dtype::complex) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); }