// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/tree_conv_op.h" #include #include namespace paddle { namespace operators { class TreeConvOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("NodesVector", "(Tensor) The feature vector of every node on the tree. " "The shape of the feature vector must be " "[max_tree_node_size, feature_size]."); AddInput("EdgeSet", "(Tensor) The Edges of Tree. The edge must be directional. " "The shape of the edge set must be [max_tree_node_size, 2]."); AddInput("Filter", "(Tensor) The feature detector. " "The shape of the filter is " "[feature_size, 3, output_size, num_filters]."); AddOutput("Out", "(Tensor) The feature vector of subtrees. " "The shape of the output tensor is [max_tree_node_size, " "output_size, num_filters]. " "The output tensor could be a new feature " "vector for next tree convolution layers."); AddAttr("max_depth", "(int, default: 2) The depth of feature detector.") .SetDefault(2) .GreaterThan(1); AddComment(R"DOC( **Tree-Based Convolution Operator** Tree-Based Convolution is a kind of convolution based on tree structure. Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN), which is used to classify tree structures, such as Abstract Syntax Tree. Tree-Based Convolution proposed a kind of data structure called continuous binary tree, which regards multiway tree as binary tree. The paper of Tree-Based Convolution Operator is here: https://arxiv.org/abs/1409.5718v1 )DOC"); } }; class TreeConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasOutput("Out")); auto edge_dims = ctx->GetInputDim("EdgeSet"); auto vector_dims = ctx->GetInputDim("NodesVector"); auto filter_dims = ctx->GetInputDim("Filter"); if (ctx->IsRuntime()) { PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2"); } else { if (edge_dims[2] != -1) { PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2"); } } PADDLE_ENFORCE_EQ(edge_dims.size(), 3, "The dimension of EdgeSet Tensor should be 3"); PADDLE_ENFORCE_EQ(vector_dims.size(), 3, "The dimension of NodesVector Tensor should be 3"); PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "The dimension of Filter Tensor should be 4"); if (ctx->IsRuntime()) { PADDLE_ENFORCE_EQ(filter_dims[1], 3, "Input(Filter) dim[1] should be 3"); PADDLE_ENFORCE_EQ( filter_dims[0], vector_dims[2], "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]"); } else { if (filter_dims[1] != -1) { PADDLE_ENFORCE_EQ(filter_dims[1], 3, "Input(Filter) dim[1] should be 3"); } if (filter_dims[0] != -1 && vector_dims[2] != -1) { PADDLE_ENFORCE_EQ( filter_dims[0], vector_dims[2], "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]"); } } auto output_dims = framework::make_ddim( {vector_dims[0], vector_dims[1], filter_dims[2], filter_dims[3]}); ctx->SetOutputDim("Out", output_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "NodesVector"), ctx.device_context()); } }; class TreeConvGradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { std::unique_ptr op(new framework::OpDesc()); op->SetType("tree_conv_grad"); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetInput("Filter", Input("Filter")); op->SetInput("EdgeSet", Input("EdgeSet")); op->SetInput("NodesVector", Input("NodesVector")); op->SetOutput(framework::GradVarName("NodesVector"), InputGrad("NodesVector")); op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter")); op->SetAttrMap(Attrs()); return op; } }; class TreeConvGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { auto vectors_dims = ctx->GetInputDim("NodesVector"); auto filter_dims = ctx->GetInputDim("Filter"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "the gradient of output(Out) must not be null"); if (ctx->HasOutput(framework::GradVarName("Filter"))) { ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); } if (ctx->HasOutput(framework::GradVarName("NodesVector"))) { ctx->SetOutputDim(framework::GradVarName("NodesVector"), vectors_dims); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "NodesVector"), ctx.device_context()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(tree_conv, ops::TreeConvOp, ops::TreeConvOpMaker, ops::TreeConvGradOpDescMaker); REGISTER_OPERATOR(tree_conv_grad, ops::TreeConvGradOp); REGISTER_OP_CPU_KERNEL( tree_conv, ops::TreeConvKernel, ops::TreeConvKernel); REGISTER_OP_CPU_KERNEL( tree_conv_grad, ops::TreeConvGradKernel, ops::TreeConvGradKernel);