/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { namespace inference { namespace tensorrt { // LeakyRelu converter from fluid to tensorRT class LeakyReluOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert fluid leaky_relu op to tensorrt layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs int input_num = op_desc.Input("X").size(); PADDLE_ENFORCE(input_num == 1); auto* input = engine_->GetITensor(op_desc.Input("X")[0]); // Get output size_t output_num = op_desc.Output("Out").size(); PADDLE_ENFORCE(output_num == 1); // Get attrs float alpha = boost::get(op_desc.GetAttr("alpha")); nvinfer1::ILayer* output_layer = nullptr; #if IS_TRT_VERSION_GE(5100) nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER( engine_, Activation, *input, nvinfer1::ActivationType::kLEAKY_RELU); layer->setAlpha(alpha); output_layer = layer; #else platform::CPUPlace place; std::unique_ptr alpha_tensor( new framework::LoDTensor()); alpha_tensor->Resize(framework::make_ddim({2})); float* alpha_data = alpha_tensor->mutable_data(place); alpha_data[0] = alpha; alpha_data[1] = 1.f - alpha; // the leaky relu formula y = (x > 0) ? x : alpha * x is equal to // y = alpha * x + (x > 0) ? (1 - alpha) * x : 0 TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1}; TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0}; TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0}; // y_scale = alpha * x auto* scale_layer = TRT_ENGINE_ADD_LAYER( engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(), scale.get(), power.get()); PADDLE_ENFORCE(nullptr != scale_layer); // y_relu = (x > 0) : x : 0 auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input, nvinfer1::ActivationType::kRELU); PADDLE_ENFORCE(nullptr != relu_layer); // TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1], 1}; auto* scale_relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)), nvinfer1::ScaleMode::kUNIFORM, shift.get(), sub_scale.get(), power.get()); PADDLE_ENFORCE(nullptr != scale_relu_layer); output_layer = TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)), *(scale_relu_layer->getOutput(0)), nvinfer1::ElementWiseOperation::kSUM); PADDLE_ENFORCE(nullptr != output_layer); // keep alpha tensor to avoid release it's memory std::string alpha_name = op_desc.Output("Out")[0] + "_alpha"; PADDLE_ENFORCE(engine_->weight_map.find(alpha_name) == engine_->weight_map.end()); engine_->weight_map[alpha_name] = std::move(alpha_tensor); #endif auto output_name = op_desc.Output("Out")[0]; RreplenishLayerAndOutput(output_layer, "leaky_relu", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);