// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/phi/core/dense_tensor.h" namespace phi { template void BatchNormGradRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& scale, const DenseTensor& bias, paddle::optional mean, paddle::optional variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, paddle::optional reserve_space, const DenseTensor& y_grad, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, bool is_inplace, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* bias_grad); template void BatchNormGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& scale, const DenseTensor& bias, paddle::optional mean, paddle::optional variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, paddle::optional reserve_space, const DenseTensor& y_grad, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* bias_grad); template void BatchNormDoubleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& scale, paddle::optional mean, paddle::optional variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, const DenseTensor& y_grad, const DenseTensor& x_grad_grad, const DenseTensor& scale_grad_grad, const DenseTensor& bias_grad_grad, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* y_grad_grad); } // namespace phi