# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddle.fluid.lod_tensor import create_lod_tensor, create_random_int_lodtensor, _validate_lod, _convert_lod import numpy import unittest class TestLoDTensor(unittest.TestCase): def test_validate_lod(self): lod = (1, 2, 1) self.assertRaises(AssertionError, _validate_lod, lod, -1) lod = [[1, 2], (2, 3)] self.assertRaises(AssertionError, _validate_lod, lod, -1) lod = [1, 2, 3] self.assertRaises(AssertionError, _validate_lod, lod, -1) lod = [] self.assertTrue(_validate_lod(lod, -1)) lod = [[], [1], [3]] self.assertFalse(_validate_lod(lod, -1)) lod = [[0], [-1], [3]] self.assertFalse(_validate_lod(lod, -1)) # Each level's sum should be equal to the number of items in the next level # Moreover, last level's sum should be equal to the tensor height lod = [[2, 3], [1, 3, 1, 2, 1]] self.assertTrue(_validate_lod(lod, tensor_height=8)) lod = [[1, 3], [2, 1, 3]] self.assertFalse(_validate_lod(lod, tensor_height=6)) lod = [[1, 3], [2, 1, 3, 4]] self.assertFalse(_validate_lod(lod, tensor_height=5)) def test_convert_lod(self): lod = [[1, 2, 3]] converted_lod = [[0, 1, 3, 6]] self.assertEqual(_convert_lod(lod), converted_lod) lod = [[2, 3], [1, 3, 1, 2, 1]] converted_lod = [[0, 2, 5], [0, 1, 4, 5, 7, 8]] self.assertEqual(_convert_lod(lod), converted_lod) def test_create_lod_tensor(self): # Only numpy array or a fluid LoDTensor is valid input to # create_lod_tensor function, currently a list of lists is not. data = [[1, 2], [3, 4]] self.assertRaises(Exception, create_lod_tensor, data, [], fluid.CPUPlace()) # Create LoDTensor from numpy array data = numpy.random.random([10, 1]) lod = [[2, 1], [3, 3, 4]] tensor = create_lod_tensor(data, lod, fluid.CPUPlace()) self.assertEqual(tensor.lod(), [[0, 2, 3], [0, 3, 6, 10]]) # Create LoDTensor from another LoDTensor, they are differnt instances new_lod = [[2, 2, 1], [1, 2, 2, 3, 2]] new_tensor = create_lod_tensor(tensor, new_lod, fluid.CPUPlace()) self.assertEqual(tensor.lod(), [[0, 2, 3], [0, 3, 6, 10]]) self.assertEqual(new_tensor.lod(), [[0, 2, 4, 5], [0, 1, 3, 5, 8, 10]]) def test_create_random_int_lodtensor(self): # The shape of a word, commonly used in speech and NLP problem, is [1] shape = [1] lod = [[2, 3, 5]] dict_size = 10000 low = 0 high = dict_size - 1 tensor = create_random_int_lodtensor(lod, shape, fluid.CPUPlace(), low, high) self.assertEqual(tensor.lod(), [[0, 2, 5, 10]]) self.assertEqual(tensor.shape(), [10, 1]) if __name__ == '__main__': unittest.main()